elementwise_mul_op.h 15.3 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
14 15

#pragma once
16

17
#include <string>
W
Wu Yi 已提交
18 19
#include "paddle/fluid/operators/elementwise/elementwise_op.h"
#include "paddle/fluid/operators/elementwise/elementwise_op_function.h"
20
#include "paddle/fluid/operators/math/blas.h"
21
#include "paddle/fluid/platform/cpu_info.h"
22 23 24 25

namespace paddle {
namespace operators {

26 27 28 29 30 31 32
class ElementwiseMulOp : public ElementwiseOp {
 public:
  using Tensor = framework::Tensor;
  using ElementwiseOp::ElementwiseOp;

  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
33 34
    auto input_data_type =
        OperatorWithKernel::IndicateOrPromoteVarDataTypes(ctx, "X", "Y");
35 36

#ifdef PADDLE_WITH_MKLDNN
37
    if (this->CanMKLDNNBeUsed(ctx, input_data_type)) {
38 39 40
      return framework::OpKernelType(input_data_type, ctx.GetPlace(),
                                     framework::DataLayout::kMKLDNN,
                                     framework::LibraryType::kMKLDNN);
41 42 43 44
    }
#endif
    return framework::OpKernelType(input_data_type, ctx.GetPlace());
  }
45 46 47 48 49 50 51 52 53 54 55 56 57

  framework::OpKernelType GetKernelTypeForVar(
      const std::string& var_name, const framework::Tensor& tensor,
      const framework::OpKernelType& expected_kernel_type) const {
    if (framework::IsComplexType(expected_kernel_type.data_type_)) {
      // only promote inputs’s types when contains complex input
      return framework::OpKernelType(tensor.type(), tensor.place(),
                                     tensor.layout());
    } else {
      return framework::OpKernelType(expected_kernel_type.data_type_,
                                     tensor.place(), tensor.layout());
    }
  }
58 59
};

60 61 62 63 64
template <typename DeviceContext, typename T>
void default_elementwise_mul(const framework::ExecutionContext& ctx,
                             const framework::Tensor* x,
                             const framework::Tensor* y, framework::Tensor* z) {
  int axis = ctx.Attr<int>("axis");
65 66 67
  auto x_dims = x->dims();
  auto y_dims = y->dims();
  if (x_dims.size() >= y_dims.size()) {
68 69 70 71 72 73
    ElementwiseComputeEx<MulFunctor<T>, DeviceContext, T>(ctx, x, y, axis,
                                                          MulFunctor<T>(), z);
  } else {
    ElementwiseComputeEx<InverseMulFunctor<T>, DeviceContext, T>(
        ctx, x, y, axis, InverseMulFunctor<T>(), z);
  }
74
}
75

76 77 78 79 80 81
template <typename DeviceContext, typename T, class Enable = void>
struct SameDimsElemwiseMul {
  void operator()(const framework::ExecutionContext& ctx,
                  const framework::Tensor* x, const framework::Tensor* y,
                  framework::Tensor* z);
};
82

Q
QI JUN 已提交
83
template <typename DeviceContext, typename T>
Y
Yu Yang 已提交
84
class ElementwiseMulKernel : public framework::OpKernel<T> {
85 86
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
C
chengduo 已提交
87
    auto x_var = ctx.InputVar("X");
88 89 90 91
    PADDLE_ENFORCE_EQ(x_var != nullptr, true,
                      platform::errors::InvalidArgument(
                          "Cannot get input Variable X, Variable name = %s.",
                          ctx.InputName("X")));
C
chengduo 已提交
92
    auto* y = ctx.Input<framework::LoDTensor>("Y");
C
chengduo 已提交
93 94 95

    framework::Tensor x, *z;
    if (x_var->IsType<framework::SelectedRows>()) {
96 97 98 99 100
      PADDLE_ENFORCE_EQ(y->dims().size() == 1 && y->dims()[0] == 1, true,
                        platform::errors::InvalidArgument(
                            "For elementwise_op, if X is Sparse, Y must be "
                            "scalar. But reveived the size of Y = %s.",
                            y->dims().size()));
C
chengduo 已提交
101 102 103 104 105 106 107 108 109 110 111 112
      auto& x_sele = x_var->Get<framework::SelectedRows>();
      auto out_sele = ctx.Output<framework::SelectedRows>("Out");
      x = x_sele.value();
      out_sele->set_rows(x_sele.rows());
      out_sele->set_height(x_sele.height());
      out_sele->mutable_value()->Resize(x_sele.value().dims());
      out_sele->mutable_value()->mutable_data(ctx.GetPlace(), x.type());
      z = ctx.Output<framework::SelectedRows>("Out")->mutable_value();
    } else if (x_var->IsType<framework::LoDTensor>()) {
      x = x_var->Get<framework::LoDTensor>();
      z = ctx.Output<framework::LoDTensor>("Out");
    } else {
113 114 115 116
      PADDLE_THROW(platform::errors::InvalidArgument(
          "X's type[%s] is not supported by elementwise_op. X's type should be "
          "LoDTensor or SelectedRows.",
          framework::ToTypeName(x_var->Type())));
C
chengduo 已提交
117
    }
C
chengduoZH 已提交
118 119

    z->mutable_data<T>(ctx.GetPlace());
120 121
    auto dims_equal = x.dims() == y->dims();
    if (dims_equal) {
122 123
      SameDimsElemwiseMul<DeviceContext, T> same_dims_mul;
      same_dims_mul(ctx, &x, y, z);
124
    } else {
C
chengduo 已提交
125
      default_elementwise_mul<DeviceContext, T>(ctx, &x, y, z);
126
    }
G
gongweibao 已提交
127 128 129
  }
};
template <typename T>
C
chengduoZH 已提交
130
struct MulGradDX {
C
chengduoZH 已提交
131
  HOSTDEVICE T operator()(T x, T y, T out, T dout) const { return dout * y; }
132 133
};

134 135 136 137 138 139 140
template <typename T>
struct MulGradDX<paddle::platform::complex<T>> {
  HOSTDEVICE paddle::platform::complex<T> operator()(
      paddle::platform::complex<T> x, paddle::platform::complex<T> y,
      paddle::platform::complex<T> out,
      paddle::platform::complex<T> dout) const {
    paddle::platform::complex<T> y_conj(y.real, -y.imag);
141 142 143 144
    return dout * y_conj;
  }
};

G
gongweibao 已提交
145
template <typename T>
C
chengduoZH 已提交
146
struct MulGradDY {
C
chengduoZH 已提交
147
  HOSTDEVICE T operator()(T x, T y, T out, T dout) const { return dout * x; }
G
gongweibao 已提交
148
};
C
chengduoZH 已提交
149

150 151 152 153 154 155 156
template <typename T>
struct MulGradDY<paddle::platform::complex<T>> {
  HOSTDEVICE paddle::platform::complex<T> operator()(
      paddle::platform::complex<T> x, paddle::platform::complex<T> y,
      paddle::platform::complex<T> out,
      paddle::platform::complex<T> dout) const {
    paddle::platform::complex<T> x_conj(x.real, -x.imag);
157 158 159 160
    return dout * x_conj;
  }
};

161 162 163 164 165 166 167 168 169 170 171 172 173
template <typename DeviceContext, typename T>
typename std::enable_if<
    std::is_same<DeviceContext, platform::CPUDeviceContext>::value>::type
elementwise_mul_grad(const framework::ExecutionContext& ctx,
                     const framework::Tensor* x, const framework::Tensor* y,
                     const framework::Tensor* out,
                     const framework::Tensor* dout, framework::Tensor* dx,
                     framework::Tensor* dy) {
  int axis = ctx.Attr<int>("axis");
  ElemwiseGradCompute<DeviceContext, T, MulGradDX<T>, MulGradDY<T>>(
      ctx, *x, *y, *out, *dout, axis, dx, dy, MulGradDX<T>(), MulGradDY<T>());
}

174
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
175 176 177 178 179 180 181 182 183 184 185
// cuda definition
template <typename DeviceContext, typename T>
typename std::enable_if<
    std::is_same<DeviceContext, platform::CUDADeviceContext>::value>::type
elementwise_mul_grad(const framework::ExecutionContext& ctx,
                     const framework::Tensor* x, const framework::Tensor* y,
                     const framework::Tensor* out,
                     const framework::Tensor* dout, framework::Tensor* dx,
                     framework::Tensor* dy);
#endif

Q
QI JUN 已提交
186
template <typename DeviceContext, typename T>
187
class ElementwiseMulGradKernel : public ElemwiseGradKernel<T> {
G
gongweibao 已提交
188 189
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
190
    ElemwiseGradKernel<T>::Compute(ctx);
C
chengduoZH 已提交
191 192 193 194 195
    using Tensor = framework::Tensor;

    auto* x = ctx.Input<Tensor>("X");
    auto* y = ctx.Input<Tensor>("Y");
    auto* dout = ctx.Input<Tensor>(framework::GradVarName("Out"));
S
sneaxiy 已提交
196
    auto* out = dout;  // out is not necessary
C
chengduoZH 已提交
197 198 199
    auto* dx = ctx.Output<Tensor>(framework::GradVarName("X"));
    auto* dy = ctx.Output<Tensor>(framework::GradVarName("Y"));
    int axis = ctx.Attr<int>("axis");
200 201 202 203 204 205 206
    if (dx != nullptr && dy != nullptr && (dx->dims() == dy->dims())) {
      elementwise_mul_grad<DeviceContext, T>(ctx, x, y, out, dout, dx, dy);
    } else {
      ElemwiseGradCompute<DeviceContext, T, MulGradDX<T>, MulGradDY<T>>(
          ctx, *x, *y, *out, *dout, axis, dx, dy, MulGradDX<T>(),
          MulGradDY<T>());
    }
G
gongweibao 已提交
207 208
  }
};
209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231

template <typename DeviceContext, typename T>
class ElementwiseMulDoubleGradKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    using Tensor = framework::Tensor;

    auto* x = ctx.Input<Tensor>("X");
    auto* y = ctx.Input<Tensor>("Y");
    auto* dout = ctx.Input<Tensor>("DOut");
    auto* ddx = ctx.Input<Tensor>("DDX");
    auto* ddy = ctx.Input<Tensor>("DDY");

    auto* dx = ctx.Output<Tensor>(framework::GradVarName("X"));
    auto* dy = ctx.Output<Tensor>(framework::GradVarName("Y"));
    auto* ddout = ctx.Output<Tensor>("DDOut");

    if (ddout) ddout->mutable_data<T>(ctx.GetPlace());

    Tensor ddx_safe, ddy_safe;
    GetDoubleGradSafeTensor<DeviceContext, T>(ctx, x, ddx, &ddx_safe);
    GetDoubleGradSafeTensor<DeviceContext, T>(ctx, y, ddy, &ddy_safe);

232 233
    // dx = dout * ddy
    // dy = dout * ddx
234
    // ddout = ddx * y + x * ddy
235 236 237 238 239 240
    // change computation sequence to save memory, so ddout can inplace ddx and
    // dx can be used as 'tmp' tensor
    // (1) dx = x * ddy
    // (2) dy = dout * ddx
    // (3) ddout = ddx * y
    // (4) ddout = ddout + dx
241
    // (5) dx = dout * ddy
242
    if (ddout) {
243 244 245
      int axis = ctx.Attr<int>("axis");
      auto& place =
          *ctx.template device_context<DeviceContext>().eigen_device();
246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281
      // size(ddout) > size(ddx), ddout can't use memory of ddx using inplace
      if (ddout->numel() > ddx->numel()) {
        ElemwiseGradCompute<DeviceContext, T, MulGradDX<T>, MulGradDY<T>>(
            ctx, ddx_safe, ddy_safe, *dout, *dout, axis, dx, dy, MulGradDX<T>(),
            MulGradDY<T>());

        Tensor ddout_tmp;
        ddout_tmp.mutable_data<T>(ddout->dims(), ctx.GetPlace());

        default_elementwise_mul<DeviceContext, T>(ctx, y, &ddx_safe, ddout);
        default_elementwise_mul<DeviceContext, T>(ctx, &ddy_safe, x,
                                                  &ddout_tmp);

        auto ddout_t = framework::EigenVector<T>::Flatten(*ddout);
        auto ddout_tmp_t = framework::EigenVector<T>::Flatten(ddout_tmp);
        ddout_t.device(place) = ddout_t + ddout_tmp_t;
      } else {
        // use dx to save memory, other than alloc tmp tensor
        Tensor* ddout_tmp = dx;

        default_elementwise_mul<DeviceContext, T>(ctx, x, &ddy_safe, ddout_tmp);
        // NOTE: in the following ElemwiseGradCompute, for the
        // first output tensor is nullptr, the branch to calculate first
        // output tensor will not be activated, DivGradDx function will not
        // be called and can be ignored, the first branch has little effect
        // on running speed.
        ElemwiseGradCompute<DeviceContext, T, MulGradDX<T>, MulGradDY<T>>(
            ctx, ddx_safe, ddy_safe, *dout, *dout, axis, nullptr, dy,
            MulGradDX<T>(), MulGradDY<T>());
        default_elementwise_mul<DeviceContext, T>(ctx, &ddx_safe, y, ddout);

        auto ddout_t = framework::EigenVector<T>::Flatten(*ddout);
        auto ddout_tmp_t = framework::EigenVector<T>::Flatten(*ddout_tmp);
        ddout_t.device(place) = ddout_t + ddout_tmp_t;
        default_elementwise_mul<DeviceContext, T>(ctx, dout, &ddy_safe, dx);
      }
282 283 284 285
    }
  }
};

286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376
template <typename DeviceContext, typename T>
class ElementwiseMulTripleGradKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    using Tensor = framework::Tensor;
    // get input
    auto* x = ctx.Input<framework::Tensor>("X");
    auto* y = ctx.Input<framework::Tensor>("Y");
    auto* dout = ctx.Input<framework::Tensor>("DOut");
    auto* ddx = ctx.Input<framework::Tensor>("DDX");
    auto* ddy = ctx.Input<framework::Tensor>("DDY");

    auto* d_dx = ctx.Input<framework::Tensor>("D_DX");
    auto* d_dy = ctx.Input<framework::Tensor>("D_DY");
    auto* d_ddout = ctx.Input<framework::Tensor>("D_DDOut");

    // get output
    auto* out_d_x = ctx.Output<framework::Tensor>("D_X");
    auto* out_d_y = ctx.Output<framework::Tensor>("D_Y");
    auto* out_d_dout = ctx.Output<framework::Tensor>("D_DOut");

    auto* out_d_ddx = ctx.Output<framework::Tensor>("D_DDX");
    auto* out_d_ddy = ctx.Output<framework::Tensor>("D_DDY");

    if (out_d_x) out_d_x->mutable_data<T>(x->dims(), ctx.GetPlace());
    if (out_d_y) out_d_y->mutable_data<T>(y->dims(), ctx.GetPlace());
    if (out_d_dout) out_d_dout->mutable_data<T>(dout->dims(), ctx.GetPlace());
    if (out_d_ddx) out_d_ddx->mutable_data<T>(x->dims(), ctx.GetPlace());
    if (out_d_ddy) out_d_ddy->mutable_data<T>(y->dims(), ctx.GetPlace());

    auto& place = *ctx.template device_context<DeviceContext>().eigen_device();

    Tensor ddx_safe, ddy_safe;
    GetDoubleGradSafeTensor<DeviceContext, T>(ctx, x, ddx, &ddx_safe);
    GetDoubleGradSafeTensor<DeviceContext, T>(ctx, y, ddy, &ddy_safe);

    if (d_ddout) {
      if (out_d_x) {
        // out_d_x = ddy * d_ddout
        default_elementwise_mul<DeviceContext, T>(ctx, &ddy_safe, d_ddout,
                                                  out_d_x);
      }
      if (out_d_y) {
        // out_d_y = ddx * d_ddout
        default_elementwise_mul<DeviceContext, T>(ctx, &ddx_safe, d_ddout,
                                                  out_d_y);
      }
    }

    if (out_d_dout) {
      // get out_d_dout
      // out_d_dout = ddy * d_dx + d_dy * ddx
      Tensor out_d_dout_tmp;
      out_d_dout_tmp.mutable_data<T>(dout->dims(), ctx.GetPlace());
      default_elementwise_mul<DeviceContext, T>(ctx, d_dy, &ddx_safe,
                                                out_d_dout);
      default_elementwise_mul<DeviceContext, T>(ctx, &ddy_safe, d_dx,
                                                &out_d_dout_tmp);
      auto out_d_dout_t = framework::EigenVector<T>::Flatten(*out_d_dout);
      auto out_d_dout_tmp_t =
          framework::EigenVector<T>::Flatten(out_d_dout_tmp);
      out_d_dout_t.device(place) = out_d_dout_t + out_d_dout_tmp_t;
    }

    if (out_d_ddx) {
      // get out_d_ddx
      // out_d_ddx = dout * d_dy + y * d_ddout
      Tensor out_d_ddx_tmp;
      out_d_ddx_tmp.mutable_data<T>(ddx->dims(), ctx.GetPlace());
      default_elementwise_mul<DeviceContext, T>(ctx, dout, d_dy, out_d_ddx);
      default_elementwise_mul<DeviceContext, T>(ctx, y, d_ddout,
                                                &out_d_ddx_tmp);
      auto out_d_ddx_t = framework::EigenVector<T>::Flatten(*out_d_ddx);
      auto out_d_ddx_tmp_t = framework::EigenVector<T>::Flatten(out_d_ddx_tmp);
      out_d_ddx_t.device(place) = out_d_ddx_t + out_d_ddx_tmp_t;
    }

    if (out_d_ddy) {
      // get out_d_ddy
      // out_d_ddy = dout * d_dx + x * d_ddout
      Tensor out_d_ddy_tmp;
      out_d_ddy_tmp.mutable_data<T>(ddy->dims(), ctx.GetPlace());
      default_elementwise_mul<DeviceContext, T>(ctx, dout, d_dx, out_d_ddy);
      default_elementwise_mul<DeviceContext, T>(ctx, x, d_ddout,
                                                &out_d_ddy_tmp);
      auto out_d_ddy_t = framework::EigenVector<T>::Flatten(*out_d_ddy);
      auto out_d_ddy_tmp_t = framework::EigenVector<T>::Flatten(out_d_ddy_tmp);
      out_d_ddy_t.device(place) = out_d_ddy_t + out_d_ddy_tmp_t;
    }
  }
};
377 378
}  // namespace operators
}  // namespace paddle