elementwise_mul_op.h 12.1 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
14 15

#pragma once
16
#include <string>
W
Wu Yi 已提交
17
#include "paddle/fluid/operators/elementwise/elementwise_op.h"
18
#include "paddle/fluid/operators/elementwise/elementwise_op_function.cu.h"
W
Wu Yi 已提交
19
#include "paddle/fluid/operators/elementwise/elementwise_op_function.h"
20
#include "paddle/fluid/operators/math/blas.h"
21
#include "paddle/fluid/platform/cpu_info.h"
22 23 24 25

namespace paddle {
namespace operators {

26 27 28 29 30 31 32
class ElementwiseMulOp : public ElementwiseOp {
 public:
  using Tensor = framework::Tensor;
  using ElementwiseOp::ElementwiseOp;

  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
33 34
    auto input_data_type =
        OperatorWithKernel::IndicateOrPromoteVarDataTypes(ctx, "X", "Y");
35 36

#ifdef PADDLE_WITH_MKLDNN
37
    if (this->CanMKLDNNBeUsed(ctx, input_data_type)) {
38 39 40
      return framework::OpKernelType(input_data_type, ctx.GetPlace(),
                                     framework::DataLayout::kMKLDNN,
                                     framework::LibraryType::kMKLDNN);
41 42 43 44
    }
#endif
    return framework::OpKernelType(input_data_type, ctx.GetPlace());
  }
45 46 47 48 49 50 51 52 53 54 55 56 57

  framework::OpKernelType GetKernelTypeForVar(
      const std::string& var_name, const framework::Tensor& tensor,
      const framework::OpKernelType& expected_kernel_type) const {
    if (framework::IsComplexType(expected_kernel_type.data_type_)) {
      // only promote inputs’s types when contains complex input
      return framework::OpKernelType(tensor.type(), tensor.place(),
                                     tensor.layout());
    } else {
      return framework::OpKernelType(expected_kernel_type.data_type_,
                                     tensor.place(), tensor.layout());
    }
  }
58 59
};

60 61 62 63 64
template <typename DeviceContext, typename T>
void default_elementwise_mul(const framework::ExecutionContext& ctx,
                             const framework::Tensor* x,
                             const framework::Tensor* y, framework::Tensor* z) {
  int axis = ctx.Attr<int>("axis");
65 66 67
  auto x_dims = x->dims();
  auto y_dims = y->dims();
  if (x_dims.size() >= y_dims.size()) {
68 69 70 71 72 73
    ElementwiseComputeEx<MulFunctor<T>, DeviceContext, T>(ctx, x, y, axis,
                                                          MulFunctor<T>(), z);
  } else {
    ElementwiseComputeEx<InverseMulFunctor<T>, DeviceContext, T>(
        ctx, x, y, axis, InverseMulFunctor<T>(), z);
  }
74
}
75

76 77 78 79 80 81
template <typename DeviceContext, typename T, class Enable = void>
struct SameDimsElemwiseMul {
  void operator()(const framework::ExecutionContext& ctx,
                  const framework::Tensor* x, const framework::Tensor* y,
                  framework::Tensor* z);
};
82

Q
QI JUN 已提交
83
template <typename DeviceContext, typename T>
Y
Yu Yang 已提交
84
class ElementwiseMulKernel : public framework::OpKernel<T> {
85 86
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
C
chengduo 已提交
87
    auto x_var = ctx.InputVar("X");
88 89 90 91
    PADDLE_ENFORCE_EQ(x_var != nullptr, true,
                      platform::errors::InvalidArgument(
                          "Cannot get input Variable X, Variable name = %s.",
                          ctx.InputName("X")));
C
chengduo 已提交
92
    auto* y = ctx.Input<framework::LoDTensor>("Y");
C
chengduo 已提交
93 94 95

    framework::Tensor x, *z;
    if (x_var->IsType<framework::SelectedRows>()) {
96 97 98 99 100
      PADDLE_ENFORCE_EQ(y->dims().size() == 1 && y->dims()[0] == 1, true,
                        platform::errors::InvalidArgument(
                            "For elementwise_op, if X is Sparse, Y must be "
                            "scalar. But reveived the size of Y = %s.",
                            y->dims().size()));
C
chengduo 已提交
101 102 103 104 105 106 107 108 109 110 111 112
      auto& x_sele = x_var->Get<framework::SelectedRows>();
      auto out_sele = ctx.Output<framework::SelectedRows>("Out");
      x = x_sele.value();
      out_sele->set_rows(x_sele.rows());
      out_sele->set_height(x_sele.height());
      out_sele->mutable_value()->Resize(x_sele.value().dims());
      out_sele->mutable_value()->mutable_data(ctx.GetPlace(), x.type());
      z = ctx.Output<framework::SelectedRows>("Out")->mutable_value();
    } else if (x_var->IsType<framework::LoDTensor>()) {
      x = x_var->Get<framework::LoDTensor>();
      z = ctx.Output<framework::LoDTensor>("Out");
    } else {
113 114 115 116
      PADDLE_THROW(platform::errors::InvalidArgument(
          "X's type[%s] is not supported by elementwise_op. X's type should be "
          "LoDTensor or SelectedRows.",
          framework::ToTypeName(x_var->Type())));
C
chengduo 已提交
117
    }
C
chengduoZH 已提交
118 119

    z->mutable_data<T>(ctx.GetPlace());
120 121
    auto dims_equal = x.dims() == y->dims();
    if (dims_equal) {
122 123
      SameDimsElemwiseMul<DeviceContext, T> same_dims_mul;
      same_dims_mul(ctx, &x, y, z);
124
    } else {
C
chengduo 已提交
125
      default_elementwise_mul<DeviceContext, T>(ctx, &x, y, z);
126
    }
G
gongweibao 已提交
127 128
  }
};
129

G
gongweibao 已提交
130
template <typename T>
C
chengduoZH 已提交
131
struct MulGradDX {
C
chengduoZH 已提交
132
  HOSTDEVICE T operator()(T x, T y, T out, T dout) const { return dout * y; }
133 134
};

135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155
template <>
struct MulGradDX<paddle::platform::complex64> {
  HOSTDEVICE paddle::platform::complex64 operator()(
      paddle::platform::complex64 x, paddle::platform::complex64 y,
      paddle::platform::complex64 out, paddle::platform::complex64 dout) const {
    paddle::platform::complex64 y_conj(y.real, -y.imag);
    return dout * y_conj;
  }
};

template <>
struct MulGradDX<paddle::platform::complex128> {
  HOSTDEVICE paddle::platform::complex128 operator()(
      paddle::platform::complex128 x, paddle::platform::complex128 y,
      paddle::platform::complex128 out,
      paddle::platform::complex128 dout) const {
    paddle::platform::complex128 y_conj(y.real, -y.imag);
    return dout * y_conj;
  }
};

G
gongweibao 已提交
156
template <typename T>
C
chengduoZH 已提交
157
struct MulGradDY {
C
chengduoZH 已提交
158
  HOSTDEVICE T operator()(T x, T y, T out, T dout) const { return dout * x; }
G
gongweibao 已提交
159
};
C
chengduoZH 已提交
160

161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181
template <>
struct MulGradDY<paddle::platform::complex64> {
  HOSTDEVICE paddle::platform::complex64 operator()(
      paddle::platform::complex64 x, paddle::platform::complex64 y,
      paddle::platform::complex64 out, paddle::platform::complex64 dout) const {
    paddle::platform::complex64 x_conj(x.real, -x.imag);
    return dout * x_conj;
  }
};

template <>
struct MulGradDY<paddle::platform::complex128> {
  HOSTDEVICE paddle::platform::complex128 operator()(
      paddle::platform::complex128 x, paddle::platform::complex128 y,
      paddle::platform::complex128 out,
      paddle::platform::complex128 dout) const {
    paddle::platform::complex128 x_conj(x.real, -x.imag);
    return dout * x_conj;
  }
};

182 183 184 185 186 187 188 189 190 191 192 193 194
template <typename DeviceContext, typename T>
typename std::enable_if<
    std::is_same<DeviceContext, platform::CPUDeviceContext>::value>::type
elementwise_mul_grad(const framework::ExecutionContext& ctx,
                     const framework::Tensor* x, const framework::Tensor* y,
                     const framework::Tensor* out,
                     const framework::Tensor* dout, framework::Tensor* dx,
                     framework::Tensor* dy) {
  int axis = ctx.Attr<int>("axis");
  ElemwiseGradCompute<DeviceContext, T, MulGradDX<T>, MulGradDY<T>>(
      ctx, *x, *y, *out, *dout, axis, dx, dy, MulGradDX<T>(), MulGradDY<T>());
}

195
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
196 197 198 199 200 201 202 203 204 205 206
// cuda definition
template <typename DeviceContext, typename T>
typename std::enable_if<
    std::is_same<DeviceContext, platform::CUDADeviceContext>::value>::type
elementwise_mul_grad(const framework::ExecutionContext& ctx,
                     const framework::Tensor* x, const framework::Tensor* y,
                     const framework::Tensor* out,
                     const framework::Tensor* dout, framework::Tensor* dx,
                     framework::Tensor* dy);
#endif

Q
QI JUN 已提交
207
template <typename DeviceContext, typename T>
208
class ElementwiseMulGradKernel : public ElemwiseGradKernel<T> {
G
gongweibao 已提交
209 210
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
211
    ElemwiseGradKernel<T>::Compute(ctx);
C
chengduoZH 已提交
212 213 214 215 216
    using Tensor = framework::Tensor;

    auto* x = ctx.Input<Tensor>("X");
    auto* y = ctx.Input<Tensor>("Y");
    auto* dout = ctx.Input<Tensor>(framework::GradVarName("Out"));
S
sneaxiy 已提交
217
    auto* out = dout;  // out is not necessary
C
chengduoZH 已提交
218 219 220
    auto* dx = ctx.Output<Tensor>(framework::GradVarName("X"));
    auto* dy = ctx.Output<Tensor>(framework::GradVarName("Y"));
    int axis = ctx.Attr<int>("axis");
221 222 223 224 225 226 227
    if (dx != nullptr && dy != nullptr && (dx->dims() == dy->dims())) {
      elementwise_mul_grad<DeviceContext, T>(ctx, x, y, out, dout, dx, dy);
    } else {
      ElemwiseGradCompute<DeviceContext, T, MulGradDX<T>, MulGradDY<T>>(
          ctx, *x, *y, *out, *dout, axis, dx, dy, MulGradDX<T>(),
          MulGradDY<T>());
    }
G
gongweibao 已提交
228 229
  }
};
230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252

template <typename DeviceContext, typename T>
class ElementwiseMulDoubleGradKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    using Tensor = framework::Tensor;

    auto* x = ctx.Input<Tensor>("X");
    auto* y = ctx.Input<Tensor>("Y");
    auto* dout = ctx.Input<Tensor>("DOut");
    auto* ddx = ctx.Input<Tensor>("DDX");
    auto* ddy = ctx.Input<Tensor>("DDY");

    auto* dx = ctx.Output<Tensor>(framework::GradVarName("X"));
    auto* dy = ctx.Output<Tensor>(framework::GradVarName("Y"));
    auto* ddout = ctx.Output<Tensor>("DDOut");

    if (ddout) ddout->mutable_data<T>(ctx.GetPlace());

    Tensor ddx_safe, ddy_safe;
    GetDoubleGradSafeTensor<DeviceContext, T>(ctx, x, ddx, &ddx_safe);
    GetDoubleGradSafeTensor<DeviceContext, T>(ctx, y, ddy, &ddy_safe);

253 254
    // dx = dout * ddy
    // dy = dout * ddx
255
    // ddout = ddx * y + x * ddy
256 257 258 259 260 261
    // change computation sequence to save memory, so ddout can inplace ddx and
    // dx can be used as 'tmp' tensor
    // (1) dx = x * ddy
    // (2) dy = dout * ddx
    // (3) ddout = ddx * y
    // (4) ddout = ddout + dx
262
    // (5) dx = dout * ddy
263
    if (ddout) {
264 265 266
      int axis = ctx.Attr<int>("axis");
      auto& place =
          *ctx.template device_context<DeviceContext>().eigen_device();
267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302
      // size(ddout) > size(ddx), ddout can't use memory of ddx using inplace
      if (ddout->numel() > ddx->numel()) {
        ElemwiseGradCompute<DeviceContext, T, MulGradDX<T>, MulGradDY<T>>(
            ctx, ddx_safe, ddy_safe, *dout, *dout, axis, dx, dy, MulGradDX<T>(),
            MulGradDY<T>());

        Tensor ddout_tmp;
        ddout_tmp.mutable_data<T>(ddout->dims(), ctx.GetPlace());

        default_elementwise_mul<DeviceContext, T>(ctx, y, &ddx_safe, ddout);
        default_elementwise_mul<DeviceContext, T>(ctx, &ddy_safe, x,
                                                  &ddout_tmp);

        auto ddout_t = framework::EigenVector<T>::Flatten(*ddout);
        auto ddout_tmp_t = framework::EigenVector<T>::Flatten(ddout_tmp);
        ddout_t.device(place) = ddout_t + ddout_tmp_t;
      } else {
        // use dx to save memory, other than alloc tmp tensor
        Tensor* ddout_tmp = dx;

        default_elementwise_mul<DeviceContext, T>(ctx, x, &ddy_safe, ddout_tmp);
        // NOTE: in the following ElemwiseGradCompute, for the
        // first output tensor is nullptr, the branch to calculate first
        // output tensor will not be activated, DivGradDx function will not
        // be called and can be ignored, the first branch has little effect
        // on running speed.
        ElemwiseGradCompute<DeviceContext, T, MulGradDX<T>, MulGradDY<T>>(
            ctx, ddx_safe, ddy_safe, *dout, *dout, axis, nullptr, dy,
            MulGradDX<T>(), MulGradDY<T>());
        default_elementwise_mul<DeviceContext, T>(ctx, &ddx_safe, y, ddout);

        auto ddout_t = framework::EigenVector<T>::Flatten(*ddout);
        auto ddout_tmp_t = framework::EigenVector<T>::Flatten(*ddout_tmp);
        ddout_t.device(place) = ddout_t + ddout_tmp_t;
        default_elementwise_mul<DeviceContext, T>(ctx, dout, &ddy_safe, dx);
      }
303 304 305 306
    }
  }
};

307 308
}  // namespace operators
}  // namespace paddle