/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #pragma once #include "paddle/framework/eigen.h" #include "paddle/framework/op_registry.h" #include "paddle/operators/math/im2col.h" #include "paddle/operators/math/math_function.h" #include "paddle/operators/math/vol2col.h" namespace paddle { namespace operators { using Tensor = framework::Tensor; using DDim = framework::DDim; // Define Op classes in .h file so that other conv transpose // operator implementations can reuse the code. class Conv2DTransposeOpMaker : public framework::OpProtoAndCheckerMaker { public: Conv2DTransposeOpMaker(framework::OpProto* proto, framework::OpAttrChecker* op_checker); }; class Conv3DTransposeOpMaker : public framework::OpProtoAndCheckerMaker { public: Conv3DTransposeOpMaker(framework::OpProto* proto, framework::OpAttrChecker* op_checker); }; class ConvTransposeOp : public framework::OperatorWithKernel { public: using framework::OperatorWithKernel::OperatorWithKernel; protected: void InferShape(framework::InferShapeContext* ctx) const override; }; class ConvTransposeOpGrad : public framework::OperatorWithKernel { public: using framework::OperatorWithKernel::OperatorWithKernel; protected: void InferShape(framework::InferShapeContext* ctx) const override; }; template class GemmConv2DTransposeKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& context) const override { const Tensor* input = context.Input("Input"); // The filter will be reshaped, so it should not be constant pointer Tensor filter = *context.Input("Filter"); Tensor* output = context.Output("Output"); std::vector strides = context.Attr>("strides"); // TODO(Zhuoyuan): Paddings can be added in future. // groups will alway be disabled in conv2dtranspose. const int batch_size = static_cast(input->dims()[0]); const int64_t m = input->dims()[1]; const int64_t h = input->dims()[2]; const int64_t w = input->dims()[3]; const int64_t k_h = filter.dims()[2]; const int64_t k_w = filter.dims()[3]; const int64_t c = output->dims()[1]; // output channels const int64_t o_h = output->dims()[2]; const int64_t o_w = output->dims()[3]; math::Col2ImFunctor col2im; // use col_shape in the im2col and col2im calculation DDim col_shape = {c, k_h, k_w, h, w}; // use col_matrix_shape in the gemm calculation DDim col_matrix_shape = {c * k_h * k_w, h * w}; Tensor col; col.mutable_data(col_shape, context.GetPlace()); // col_matrix shares the same piece of data with col, // but will be reshaped into a two-dimensional matrix shape // to call the matrix multiplication interface. Tensor col_matrix; col_matrix.ShareDataWith(col); col_matrix.Resize(col_matrix_shape); DDim output_shape = {c, o_h, o_w}; DDim input_matrix_shape = {m, h * w}; // filter size: (m, c * k_h * k_w) DDim filter_matrix_shape = {m, c * k_h * k_w}; filter.Resize(filter_matrix_shape); output->mutable_data(context.GetPlace()); math::SetConstant set_zero; set_zero(context.device_context(), output, static_cast(0)); // convolution transpose: gemm + col2im (similar to conv-backward on input) for (int i = 0; i < batch_size; i++) { // batch with size (m, h * w) Tensor input_batch = input->Slice(i, i + 1).Resize(input_matrix_shape); // output size: (c, o_h, o_w) Tensor output_batch = output->Slice(i, i + 1).Resize(output_shape); // col_matrix = filter * input_batch // of shape (c * k_h * k_w, h * w) math::matmul(context.device_context(), filter, true, input_batch, false, static_cast(1.0), &col_matrix, static_cast(0.0)); // col2im: col_matrix -> dy // from (c * k_h * k_w, h * w) to (c, o_h, o_w) col2im(context.device_context(), output_batch, col, strides[0], strides[1], 0, 0, 0, 0); } } }; template class GemmConv2DTransposeGradKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& context) const override { const Tensor* input = context.Input("Input"); const Tensor* output_grad = context.Input(framework::GradVarName("Output")); // For filter, we do not use const pointer b/c we will do reshape, // but we should avoid modifying its value. Tensor filter = *context.Input("Filter"); Tensor* input_grad = context.Output(framework::GradVarName("Input")); Tensor* filter_grad = context.Output(framework::GradVarName("Filter")); std::vector strides = context.Attr>("strides"); // Actually, no paddings and groups allowed in conv transpose. std::vector paddings = context.Attr>("paddings"); const int batch_size = static_cast(input->dims()[0]); const int64_t m = input->dims()[1]; const int64_t h = input->dims()[2]; const int64_t w = input->dims()[3]; const int64_t k_h = filter.dims()[2]; const int64_t k_w = filter.dims()[3]; const int64_t c = output_grad->dims()[1]; // output channels const int64_t o_h = output_grad->dims()[2]; const int64_t o_w = output_grad->dims()[3]; // Only im2col functor required for bp to get to the right shape math::Im2ColFunctor im2col; // use col_shape in the im2col and col2im calculation DDim col_shape = {c, k_h, k_w, h, w}; DDim output_shape = {c, o_h, o_w}; DDim input_matrix_shape = {m, h * w}; DDim filter_matrix_shape = {m, c * k_h * k_w}; filter.Resize(filter_matrix_shape); if ((!input_grad) && (!filter_grad)) { return; } // convolution transpose grad on input: // im2col + gemm (similar to conv-forward) // input need to compute gradient if (input_grad || filter_grad) { Tensor col; col.mutable_data(col_shape, context.GetPlace()); // col_matrix shares the same piece of data with col, // but will be reshaped into a two-dimensional matrix shape // to call the matrix multiplication interface. Tensor col_matrix; col_matrix.ShareDataWith(col); DDim col_matrix_shape = {c * k_h * k_w, h * w}; col_matrix.Resize(col_matrix_shape); Tensor filter_grad_; math::SetConstant set_zero; if (input_grad) { input_grad->mutable_data(context.GetPlace()); set_zero(context.device_context(), input_grad, static_cast(0)); } if (filter_grad) { // filter size (m, c, k_h, k_w) filter_grad->mutable_data(context.GetPlace()); set_zero(context.device_context(), filter_grad, static_cast(0)); filter_grad_ = *filter_grad; filter_grad_.Resize(filter_matrix_shape); } for (int i = 0; i < batch_size; i++) { // batch with size (c, o_h * o_w) Tensor output_grad_batch = output_grad->Slice(i, i + 1).Resize(output_shape); // im2col: dy -> col matrix // from (c, o_h, o_w) to (c * k_h * k_w, h * w) im2col(context.device_context(), output_grad_batch, col, strides[0], strides[1], paddings[0], paddings[0], paddings[1], paddings[1]); if (input_grad) { // batch with size (m, h, w) Tensor input_grad_batch = input_grad->Slice(i, i + 1).Resize(input_matrix_shape); // gemm: dx = filter * dy // (m, c * k_h * k_w) * (c * k_h * k_w, h * w) -> (m, h * w) math::matmul(context.device_context(), filter, false, col_matrix, false, static_cast(1.0), &input_grad_batch, static_cast(0.0)); } if (filter_grad) { // input batch Tensor in_batch = input->Slice(i, i + 1).Resize(input_matrix_shape); // gemm: d_filter = x * dy^T // (m, c * h * w) * (k_h * k_w, c * h * w) -> (m, k_h * k_w) math::matmul(context.device_context(), in_batch, false, col_matrix, true, static_cast(1.0), &filter_grad_, static_cast(1.0)); } } } } }; template class GemmConv3DTransposeKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& context) const override { const Tensor* input = context.Input("Input"); // The filter will be reshaped, so it should not be constant pointer Tensor filter = *context.Input("Filter"); Tensor* output = context.Output("Output"); std::vector strides = context.Attr>("strides"); // TODO(chengduo): Paddings can be added in future. // groups will alway be disabled in conv3dtranspose. const int batch_size = static_cast(input->dims()[0]); const int64_t m = input->dims()[1]; const int64_t d = input->dims()[2]; const int64_t h = input->dims()[3]; const int64_t w = input->dims()[4]; const int64_t k_d = filter.dims()[2]; const int64_t k_h = filter.dims()[3]; const int64_t k_w = filter.dims()[4]; const int64_t c = output->dims()[1]; // output channels const int64_t o_d = output->dims()[2]; const int64_t o_h = output->dims()[3]; const int64_t o_w = output->dims()[4]; math::Col2VolFunctor col2vol; // use col_shape in the vol2col and col2vol calculation DDim col_shape = {c, k_d, k_h, k_w, d, h, w}; // use col_matrix_shape in the gemm calculation DDim col_matrix_shape = {c * k_d * k_h * k_w, d * h * w}; Tensor col; col.mutable_data(col_shape, context.GetPlace()); // col_matrix shares the same piece of data with col, // but will be reshaped into a two-dimensional matrix shape // to call the matrix multiplication interface. Tensor col_matrix; col_matrix.ShareDataWith(col); col_matrix.Resize(col_matrix_shape); DDim output_shape = {c, o_d, o_h, o_w}; DDim input_matrix_shape = {m, d * h * w}; // filter size: (m, c * k_d * k_h * k_w) DDim filter_matrix_shape = {m, c * k_d * k_h * k_w}; filter.Resize(filter_matrix_shape); output->mutable_data(context.GetPlace()); math::SetConstant set_zero; set_zero(context.device_context(), output, static_cast(0)); // convolution transpose: gemm + col2vol (similar to conv-backward on input) for (int i = 0; i < batch_size; i++) { // batch with size (m, d * h * w) Tensor input_batch = input->Slice(i, i + 1).Resize(input_matrix_shape); // output size: (c, o_d, o_h, o_w) Tensor output_batch = output->Slice(i, i + 1).Resize(output_shape); // col_matrix = filter * input_batch // of shape (c * k_d * k_h * k_w, d * h * w) math::matmul(context.device_context(), filter, true, input_batch, false, static_cast(1.0), &col_matrix, static_cast(0.0)); // col2vol: col_matrix -> dy // from (c * k_d * k_h * k_w, d * h * w) to (c, o_d, o_h, o_w) col2vol(context.device_context(), output_batch, col, strides[0], strides[1], strides[2], 0, 0, 0); } } }; template class GemmConv3DTransposeGradKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& context) const override { const Tensor* input = context.Input("Input"); const Tensor* output_grad = context.Input(framework::GradVarName("Output")); // For filter, we do not use const pointer b/c we will do reshape, // but we should avoid modifying its value. Tensor filter = *context.Input("Filter"); Tensor* input_grad = context.Output(framework::GradVarName("Input")); Tensor* filter_grad = context.Output(framework::GradVarName("Filter")); std::vector strides = context.Attr>("strides"); // Actually, no paddings and groups allowed in conv transpose. std::vector paddings = context.Attr>("paddings"); const int batch_size = static_cast(input->dims()[0]); const int64_t m = input->dims()[1]; const int64_t d = input->dims()[2]; const int64_t h = input->dims()[3]; const int64_t w = input->dims()[4]; const int64_t k_d = filter.dims()[2]; const int64_t k_h = filter.dims()[3]; const int64_t k_w = filter.dims()[4]; const int64_t c = output_grad->dims()[1]; // output channels const int64_t o_d = output_grad->dims()[2]; const int64_t o_h = output_grad->dims()[3]; const int64_t o_w = output_grad->dims()[4]; // Only vol2col functor required for bp to get to the right shape math::Vol2ColFunctor vol2col; // use col_shape in the vol2col and col2vol calculation DDim col_shape = {c, k_d, k_h, k_w, d, h, w}; // use col_matrix_shape in the gemm calculation DDim col_matrix_shape_f = {c * d * h * w, k_d * k_h * k_w}; DDim output_shape = {c, o_d, o_h, o_w}; DDim input_matrix_shape = {m, d * h * w}; DDim filter_matrix_shape = {m, c * k_d * k_h * k_w}; filter.Resize(filter_matrix_shape); if ((!input_grad) && (!filter_grad)) { return; } // convolution transpose grad on input: // vol2col + gemm (similar to conv-forward) // input need to compute gradient if (input_grad || filter_grad) { Tensor col; col.mutable_data(col_shape, context.GetPlace()); // col_matrix shares the same piece of data with col, // but will be reshaped into a two-dimensional matrix shape // to call the matrix multiplication interface. Tensor col_matrix; col_matrix.ShareDataWith(col); DDim col_matrix_shape = {c * k_d * k_h * k_w, d * h * w}; col_matrix.Resize(col_matrix_shape); Tensor filter_grad_; math::SetConstant set_zero; if (input_grad) { input_grad->mutable_data(context.GetPlace()); set_zero(context.device_context(), input_grad, static_cast(0)); } if (filter_grad) { // filter size (m, c * k_d * k_h * k_w) filter_grad->mutable_data(context.GetPlace()); set_zero(context.device_context(), filter_grad, static_cast(0)); filter_grad_ = *filter_grad; filter_grad_.Resize(filter_matrix_shape); } for (int i = 0; i < batch_size; i++) { // batch with size (c, o_d * o_h * o_w) Tensor output_grad_batch = output_grad->Slice(i, i + 1).Resize(output_shape); // vol2col: dy -> col_matrix // from (c, o_d, o_h, o_w) to (c * k_d * k_h * k_w, d * h * w) vol2col(context.device_context(), output_grad_batch, col, strides[0], strides[1], strides[2], paddings[0], paddings[1], paddings[2]); if (input_grad) { // batch with size (m, d, h, w) Tensor input_grad_batch = input_grad->Slice(i, i + 1).Resize(input_matrix_shape); // gemm: dx = filter * dy // (m, c * k_d * k_h * k_w) * (c * k_d * k_h * k_w, d * h * w) -> (m, // d, h, w) math::matmul(context.device_context(), filter, false, col_matrix, false, static_cast(1.0), &input_grad_batch, static_cast(0.0)); } if (filter_grad) { // input batch Tensor in_batch = input->Slice(i, i + 1).Resize(input_matrix_shape); // gemm: d_filter = x * dy^T // (m, d * h * w) * (d * h * w, c * k_d * k_h * k_w) -> (m, c * k_d * // k_h * k_w) math::matmul(context.device_context(), in_batch, false, col_matrix, true, static_cast(1.0), &filter_grad_, static_cast(1.0)); } } } } }; } // namespace operators } // namespace paddle