adam_op.h 12.0 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14 15

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once
Y
Yang Yu 已提交
16
#include <math.h>  // for sqrt in CPU and CUDA
17
#include <Eigen/Dense>
S
sneaxiy 已提交
18
#include <vector>
Y
Yi Wang 已提交
19 20 21 22
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/detail/safe_ref.h"
#include "paddle/fluid/operators/math/selected_rows_functor.h"
#include "paddle/fluid/platform/for_range.h"
23 24 25 26

namespace paddle {
namespace operators {

T
wip  
typhoonzero 已提交
27 28
namespace scatter = paddle::operators::math::scatter;

29 30 31 32 33 34
struct GPUAdam;
struct CPUAdam;

template <typename T, typename Flavour>
struct AdamFunctor;

Y
Yang Yu 已提交
35
template <typename T>
36
struct AdamFunctor<T, GPUAdam> {
Y
Yang Yu 已提交
37 38 39 40 41 42 43 44 45 46 47 48 49
  T beta1_;
  T beta2_;
  T epsilon_;

  const T* beta1_pow_;
  const T* beta2_pow_;
  const T* moment1_;
  T* moment1_out_;
  const T* moment2_;
  T* moment2_out_;
  const T* lr_;
  const T* grad_;
  const T* param_;
Y
Yang Yu 已提交
50
  T* param_out_;
Y
Yang Yu 已提交
51 52 53

  AdamFunctor(T beta1, T beta2, T epsilon, const T* beta1_pow,
              const T* beta2_pow, const T* mom1, T* mom1_out, const T* mom2,
Y
Yang Yu 已提交
54 55
              T* mom2_out, const T* lr, const T* grad, const T* param,
              T* param_out)
Y
Yang Yu 已提交
56 57 58 59 60 61 62 63 64 65 66
      : beta1_(beta1),
        beta2_(beta2),
        epsilon_(epsilon),
        beta1_pow_(beta1_pow),
        beta2_pow_(beta2_pow),
        moment1_(mom1),
        moment1_out_(mom1_out),
        moment2_(mom2),
        moment2_out_(mom2_out),
        lr_(lr),
        grad_(grad),
Y
Yang Yu 已提交
67 68
        param_(param),
        param_out_(param_out) {}
Y
Yang Yu 已提交
69

Y
Yang Yu 已提交
70
  inline HOSTDEVICE void operator()(size_t i) const {
Y
Yang Yu 已提交
71 72 73 74 75 76 77
    // Merge all memory access together.
    T g = grad_[i];
    T mom1 = moment1_[i];
    T mom2 = moment2_[i];
    T lr = *lr_;
    T beta1_pow = *beta1_pow_;
    T beta2_pow = *beta2_pow_;
Y
Yang Yu 已提交
78
    T p = param_[i];
Y
Yang Yu 已提交
79 80

    // Calculation
Y
Yang Yu 已提交
81
    lr *= sqrt(1 - beta2_pow) / (1 - beta1_pow);
82

Y
Yang Yu 已提交
83 84
    mom1 = beta1_ * mom1 + (1 - beta1_) * g;
    mom2 = beta2_ * mom2 + (1 - beta2_) * g * g;
Y
Yang Yu 已提交
85
    p -= lr * (mom1 / (sqrt(mom2) + epsilon_));
Y
Yang Yu 已提交
86 87 88 89

    // Write back to global memory
    moment1_out_[i] = mom1;
    moment2_out_[i] = mom2;
Y
Yang Yu 已提交
90
    param_out_[i] = p;
Y
Yang Yu 已提交
91 92 93
  }
};

94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158
template <typename T>
struct AdamFunctor<T, CPUAdam> {
  T beta1_;
  T beta2_;
  T epsilon_;

  const T* beta1_pow_;
  const T* beta2_pow_;
  const T* moment1_;
  T* moment1_out_;
  const T* moment2_;
  T* moment2_out_;
  const T* lr_;
  const T* grad_;
  const T* param_;
  T* param_out_;

  AdamFunctor(T beta1, T beta2, T epsilon, const T* beta1_pow,
              const T* beta2_pow, const T* mom1, T* mom1_out, const T* mom2,
              T* mom2_out, const T* lr, const T* grad, const T* param,
              T* param_out)
      : beta1_(beta1),
        beta2_(beta2),
        epsilon_(epsilon),
        beta1_pow_(beta1_pow),
        beta2_pow_(beta2_pow),
        moment1_(mom1),
        moment1_out_(mom1_out),
        moment2_(mom2),
        moment2_out_(mom2_out),
        lr_(lr),
        grad_(grad),
        param_(param),
        param_out_(param_out) {}

  void operator()(size_t numel) const {
    Eigen::Map<const Eigen::Array<T, 1, Eigen::Dynamic>> g{
        grad_, static_cast<Eigen::Index>(numel)};
    Eigen::Map<const Eigen::Array<T, 1, Eigen::Dynamic>> mom1{
        moment1_, static_cast<Eigen::Index>(numel)};
    Eigen::Map<const Eigen::Array<T, 1, Eigen::Dynamic>> mom2{
        moment2_, static_cast<Eigen::Index>(numel)};
    Eigen::Map<const Eigen::Array<T, 1, Eigen::Dynamic>> param{
        param_, static_cast<Eigen::Index>(numel)};

    Eigen::Map<Eigen::Array<T, 1, Eigen::Dynamic>> param_out{
        param_out_, static_cast<Eigen::Index>(numel)};
    Eigen::Map<Eigen::Array<T, 1, Eigen::Dynamic>> moment1_out{
        moment1_out_, static_cast<Eigen::Index>(numel)};
    Eigen::Map<Eigen::Array<T, 1, Eigen::Dynamic>> moment2_out{
        moment2_out_, static_cast<Eigen::Index>(numel)};

    T lr = *lr_;
    T beta1_pow = *beta1_pow_;
    T beta2_pow = *beta2_pow_;

    // Calculation
    lr *= sqrt(1 - beta2_pow) / (1 - beta1_pow);

    moment1_out = beta1_ * mom1 + (1 - beta1_) * g;
    moment2_out = beta2_ * mom2 + (1 - beta2_) * g * g;
    param_out = param - lr * (moment1_out / (moment2_out.sqrt() + epsilon_));
  }
};

T
wip  
typhoonzero 已提交
159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177
template <typename T>
struct SparseAdamFunctor {
  T beta1_;
  T beta2_;
  T epsilon_;

  const T* beta1_pow_;
  const T* beta2_pow_;
  const T* moment1_;
  T* moment1_out_;
  const T* moment2_;
  T* moment2_out_;
  const T* lr_;
  const T* grad_;
  const T* param_;
  T* param_out_;

  const int64_t* rows_;
  int64_t row_numel_;
S
sneaxiy 已提交
178
  int64_t row_count_;
T
wip  
typhoonzero 已提交
179 180 181 182 183

  SparseAdamFunctor(T beta1, T beta2, T epsilon, const T* beta1_pow,
                    const T* beta2_pow, const T* mom1, T* mom1_out,
                    const T* mom2, T* mom2_out, const T* lr, const T* grad,
                    const T* param, T* param_out, const int64_t* rows,
S
sneaxiy 已提交
184
                    int64_t row_numel, int64_t row_count)
T
wip  
typhoonzero 已提交
185 186 187 188 189 190 191 192 193 194 195 196 197 198
      : beta1_(beta1),
        beta2_(beta2),
        epsilon_(epsilon),
        beta1_pow_(beta1_pow),
        beta2_pow_(beta2_pow),
        moment1_(mom1),
        moment1_out_(mom1_out),
        moment2_(mom2),
        moment2_out_(mom2_out),
        lr_(lr),
        grad_(grad),
        param_(param),
        param_out_(param_out),
        rows_(rows),
S
sneaxiy 已提交
199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214
        row_numel_(row_numel),
        row_count_(row_count) {}

  inline HOSTDEVICE int64_t BinarySearchInRows(int64_t row) const {
    int64_t beg = 0, end = row_count_ - 1;
    while (beg <= end) {
      auto mid = ((beg + end) >> 1);
      if (rows_[mid] == row)
        return mid;
      else if (rows_[mid] < row)
        beg = mid + 1;
      else
        end = mid - 1;
    }
    return -1;
  }
T
wip  
typhoonzero 已提交
215 216

  inline HOSTDEVICE void operator()(size_t i) const {
S
sneaxiy 已提交
217 218 219 220 221 222 223 224
    int64_t row = i / row_numel_;
    auto row_idx = BinarySearchInRows(row);
    T g = row_idx >= 0 ? grad_[row_idx * row_numel_ + i % row_numel_] : 0;

    // The following code is the same as dense
    T mom1 = moment1_[i];
    T mom2 = moment2_[i];
    T lr = *lr_;
T
typhoonzero 已提交
225 226
    T beta1_pow = *beta1_pow_;
    T beta2_pow = *beta2_pow_;
S
sneaxiy 已提交
227 228 229 230 231 232 233 234 235 236 237 238 239
    T p = param_[i];

    // Calculation
    lr *= sqrt(1 - beta2_pow) / (1 - beta1_pow);

    mom1 = beta1_ * mom1 + (1 - beta1_) * g;
    mom2 = beta2_ * mom2 + (1 - beta2_) * g * g;
    p -= lr * (mom1 / (sqrt(mom2) + epsilon_));

    // Write back to global memory
    moment1_out_[i] = mom1;
    moment2_out_[i] = mom2;
    param_out_[i] = p;
T
wip  
typhoonzero 已提交
240 241 242
  }
};

Q
QI JUN 已提交
243
template <typename DeviceContext, typename T>
244 245 246
class AdamOpKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
Y
Yang Yu 已提交
247 248
    using paddle::framework::LoDTensor;
    using paddle::operators::detail::Ref;
249

250 251 252
    T beta1 = static_cast<T>(ctx.Attr<float>("beta1"));
    T beta2 = static_cast<T>(ctx.Attr<float>("beta2"));
    T epsilon = static_cast<T>(ctx.Attr<float>("epsilon"));
Y
Yang Yu 已提交
253
    auto& param = Ref(ctx.Input<LoDTensor>("Param"), "Must set Param");
T
wip  
typhoonzero 已提交
254 255
    // auto& grad = Ref(ctx.Input<LoDTensor>("Grad"), "Must set Grad");
    auto* grad_var = ctx.InputVar("Grad");
Y
Yang Yu 已提交
256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272
    auto& mom1 = Ref(ctx.Input<LoDTensor>("Moment1"), "Must set Moment1");
    auto& mom2 = Ref(ctx.Input<LoDTensor>("Moment2"), "Must set Moment2");
    auto& lr =
        Ref(ctx.Input<LoDTensor>("LearningRate"), "Must set LearningRate");

    auto& beta1_pow =
        Ref(ctx.Input<LoDTensor>("Beta1Pow"), "Must set Beta1Pow");
    auto& beta2_pow =
        Ref(ctx.Input<LoDTensor>("Beta2Pow"), "Must set Beta2Pow");

    auto& param_out =
        Ref(ctx.Output<LoDTensor>("ParamOut"), "Must set ParamOut");
    auto& mom1_out =
        Ref(ctx.Output<LoDTensor>("Moment1Out"), "Must set Moment1Out");
    auto& mom2_out =
        Ref(ctx.Output<LoDTensor>("Moment2Out"), "Must set Moment1Out");

T
wip  
typhoonzero 已提交
273 274
    if (grad_var->IsType<framework::LoDTensor>()) {
      auto& grad = Ref(ctx.Input<LoDTensor>("Grad"), "Must set Grad");
275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302

      if (platform::is_cpu_place(ctx.GetPlace())) {
        AdamFunctor<T, CPUAdam> functor(
            beta1, beta2, epsilon, beta1_pow.template data<T>(),
            beta2_pow.template data<T>(), mom1.template data<T>(),
            mom1_out.template mutable_data<T>(ctx.GetPlace()),
            mom2.template data<T>(),
            mom2_out.template mutable_data<T>(ctx.GetPlace()),
            lr.template data<T>(), grad.template data<T>(),
            param.template data<T>(),
            param_out.template mutable_data<T>(ctx.GetPlace()));
        functor(param.numel());
      } else if (platform::is_gpu_place(ctx.GetPlace())) {
        AdamFunctor<T, GPUAdam> functor(
            beta1, beta2, epsilon, beta1_pow.template data<T>(),
            beta2_pow.template data<T>(), mom1.template data<T>(),
            mom1_out.template mutable_data<T>(ctx.GetPlace()),
            mom2.template data<T>(),
            mom2_out.template mutable_data<T>(ctx.GetPlace()),
            lr.template data<T>(), grad.template data<T>(),
            param.template data<T>(),
            param_out.template mutable_data<T>(ctx.GetPlace()));

        platform::ForRange<DeviceContext> for_range(
            static_cast<const DeviceContext&>(ctx.device_context()),
            param.numel());
        for_range(functor);
      }
T
wip  
typhoonzero 已提交
303 304 305
    } else if (grad_var->IsType<framework::SelectedRows>()) {
      auto& grad =
          Ref(ctx.Input<framework::SelectedRows>("Grad"), "Must set Grad");
306 307 308 309
      if (grad.rows().size() == 0) {
        VLOG(3) << "grad row size is 0!!";
        return;
      }
S
sneaxiy 已提交
310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337

      std::vector<int64_t> cpu_rows(grad.rows().begin(), grad.rows().end());
      bool is_strict_sorted = true;
      for (size_t i = 1; i < cpu_rows.size(); ++i) {
        if (cpu_rows[i - 1] >= cpu_rows[i]) {
          is_strict_sorted = false;
          break;
        }
      }

      const framework::SelectedRows* grad_merge_ptr;
      if (is_strict_sorted) {
        grad_merge_ptr = &grad;
      } else {
        // merge duplicated rows if any.
        // The rows of grad_merge have been sorted inside MergeAdd functor
        scatter::MergeAdd<DeviceContext, T> merge_func;
        auto* grad_merge_var = const_cast<framework::Scope&>(ctx.scope())
                                   .Var()
                                   ->GetMutable<framework::SelectedRows>();
        merge_func(ctx.template device_context<DeviceContext>(), grad,
                   grad_merge_var);
        grad_merge_ptr = grad_merge_var;

        std::cerr << "Create new variables in adam_op" << std::endl;
      }

      auto& grad_merge = *grad_merge_ptr;
T
wip  
typhoonzero 已提交
338
      auto& grad_tensor = grad_merge.value();
T
wip  
typhoonzero 已提交
339
      const T* grad_data = grad_tensor.template data<T>();
S
sneaxiy 已提交
340 341
      const int64_t* rows = nullptr;
// When compiled without CUDA, the CUDAData() interface should not be
342 343
// provided.
#if defined(PADDLE_WITH_CUDA)
D
dzhwinter 已提交
344
      if (platform::is_gpu_place(ctx.GetPlace())) {
S
sneaxiy 已提交
345
        rows = grad_merge.rows().CUDAData(ctx.GetPlace());
D
dzhwinter 已提交
346
      } else {
347
#endif
S
sneaxiy 已提交
348
        rows = grad_merge.rows().data();
349 350

#if defined(PADDLE_WITH_CUDA)
D
dzhwinter 已提交
351
      }
352
#endif
T
wip  
typhoonzero 已提交
353
      auto row_numel = grad_tensor.numel() / grad_merge.rows().size();
T
wip  
typhoonzero 已提交
354 355 356 357 358 359 360 361

      SparseAdamFunctor<T> functor(
          beta1, beta2, epsilon, beta1_pow.template data<T>(),
          beta2_pow.template data<T>(), mom1.template data<T>(),
          mom1_out.template mutable_data<T>(ctx.GetPlace()),
          mom2.template data<T>(),
          mom2_out.template mutable_data<T>(ctx.GetPlace()),
          lr.template data<T>(), grad_data, param.template data<T>(),
S
sneaxiy 已提交
362 363
          param_out.template mutable_data<T>(ctx.GetPlace()), rows, row_numel,
          grad_merge.rows().size());
T
wip  
typhoonzero 已提交
364 365
      platform::ForRange<DeviceContext> for_range(
          static_cast<const DeviceContext&>(ctx.device_context()),
S
sneaxiy 已提交
366
          param.numel());
T
wip  
typhoonzero 已提交
367 368 369 370
      for_range(functor);
    } else {
      PADDLE_THROW("Variable type not supported by adam_op");
    }
371 372 373 374 375
  }
};

}  // namespace operators
}  // namespace paddle