adam_op.h 7.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once
Y
Yang Yu 已提交
16
#include <math.h>  // for sqrt in CPU and CUDA
17
#include "paddle/framework/op_registry.h"
Y
Yang Yu 已提交
18
#include "paddle/operators/detail/safe_ref.h"
T
wip  
typhoonzero 已提交
19
#include "paddle/operators/math/selected_rows_functor.h"
Y
Yang Yu 已提交
20
#include "paddle/platform/for_range.h"
21 22 23 24

namespace paddle {
namespace operators {

T
wip  
typhoonzero 已提交
25 26
namespace scatter = paddle::operators::math::scatter;

Y
Yang Yu 已提交
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41
template <typename T>
struct AdamFunctor {
  T beta1_;
  T beta2_;
  T epsilon_;

  const T* beta1_pow_;
  const T* beta2_pow_;
  const T* moment1_;
  T* moment1_out_;
  const T* moment2_;
  T* moment2_out_;
  const T* lr_;
  const T* grad_;
  const T* param_;
Y
Yang Yu 已提交
42
  T* param_out_;
Y
Yang Yu 已提交
43 44 45

  AdamFunctor(T beta1, T beta2, T epsilon, const T* beta1_pow,
              const T* beta2_pow, const T* mom1, T* mom1_out, const T* mom2,
Y
Yang Yu 已提交
46 47
              T* mom2_out, const T* lr, const T* grad, const T* param,
              T* param_out)
Y
Yang Yu 已提交
48 49 50 51 52 53 54 55 56 57 58
      : beta1_(beta1),
        beta2_(beta2),
        epsilon_(epsilon),
        beta1_pow_(beta1_pow),
        beta2_pow_(beta2_pow),
        moment1_(mom1),
        moment1_out_(mom1_out),
        moment2_(mom2),
        moment2_out_(mom2_out),
        lr_(lr),
        grad_(grad),
Y
Yang Yu 已提交
59 60
        param_(param),
        param_out_(param_out) {}
Y
Yang Yu 已提交
61

Y
Yang Yu 已提交
62
  inline HOSTDEVICE void operator()(size_t i) const {
Y
Yang Yu 已提交
63 64 65 66 67 68 69
    // Merge all memory access together.
    T g = grad_[i];
    T mom1 = moment1_[i];
    T mom2 = moment2_[i];
    T lr = *lr_;
    T beta1_pow = *beta1_pow_;
    T beta2_pow = *beta2_pow_;
Y
Yang Yu 已提交
70
    T p = param_[i];
Y
Yang Yu 已提交
71 72

    // Calculation
Y
Yang Yu 已提交
73
    lr *= sqrt(1 - beta2_pow) / (1 - beta1_pow);
Y
Yang Yu 已提交
74 75
    mom1 = beta1_ * mom1 + (1 - beta1_) * g;
    mom2 = beta2_ * mom2 + (1 - beta2_) * g * g;
Y
Yang Yu 已提交
76
    p -= lr * (mom1 / (sqrt(mom2) + epsilon_));
Y
Yang Yu 已提交
77 78 79 80

    // Write back to global memory
    moment1_out_[i] = mom1;
    moment2_out_[i] = mom2;
Y
Yang Yu 已提交
81
    param_out_[i] = p;
Y
Yang Yu 已提交
82 83 84
  }
};

T
wip  
typhoonzero 已提交
85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108
template <typename T>
struct SparseAdamFunctor {
  T beta1_;
  T beta2_;
  T epsilon_;

  const T* beta1_pow_;
  const T* beta2_pow_;
  const T* moment1_;
  T* moment1_out_;
  const T* moment2_;
  T* moment2_out_;
  const T* lr_;
  const T* grad_;
  const T* param_;
  T* param_out_;

  const int64_t* rows_;
  int64_t row_numel_;

  SparseAdamFunctor(T beta1, T beta2, T epsilon, const T* beta1_pow,
                    const T* beta2_pow, const T* mom1, T* mom1_out,
                    const T* mom2, T* mom2_out, const T* lr, const T* grad,
                    const T* param, T* param_out, const int64_t* rows,
T
typhoonzero 已提交
109
                    int64_t row_numel)
T
wip  
typhoonzero 已提交
110 111 112 113 114 115 116 117 118 119 120 121 122 123
      : beta1_(beta1),
        beta2_(beta2),
        epsilon_(epsilon),
        beta1_pow_(beta1_pow),
        beta2_pow_(beta2_pow),
        moment1_(mom1),
        moment1_out_(mom1_out),
        moment2_(mom2),
        moment2_out_(mom2_out),
        lr_(lr),
        grad_(grad),
        param_(param),
        param_out_(param_out),
        rows_(rows),
T
typhoonzero 已提交
124
        row_numel_(row_numel) {}
T
wip  
typhoonzero 已提交
125 126

  inline HOSTDEVICE void operator()(size_t i) const {
T
typhoonzero 已提交
127 128
    T beta1_pow = *beta1_pow_;
    T beta2_pow = *beta2_pow_;
T
wip  
typhoonzero 已提交
129 130 131 132 133 134 135 136 137 138 139
    for (int64_t j = 0; j < row_numel_; ++j) {
      T g = grad_[i * row_numel_ + j];
      T mom1 = moment1_[rows_[i] * row_numel_ + j];
      T mom2 = moment2_[rows_[i] * row_numel_ + j];
      T lr = *lr_;
      T p = param_[rows_[i] * row_numel_ + j];

      lr *= sqrt(1 - beta2_pow) / (1 - beta1_pow);
      mom1 = beta1_ * mom1 + (1 - beta1_) * g;
      mom2 = beta2_ * mom2 + (1 - beta2_) * g * g;
      p -= lr * (mom1 / (sqrt(mom2) + epsilon_));
T
typhoonzero 已提交
140

T
wip  
typhoonzero 已提交
141 142 143 144 145 146 147
      moment1_out_[rows_[i] * row_numel_ + j] = mom1;
      moment2_out_[rows_[i] * row_numel_ + j] = mom2;
      param_out_[rows_[i] * row_numel_ + j] = p;
    }  // for col id
  }
};

Q
QI JUN 已提交
148
template <typename DeviceContext, typename T>
149 150 151
class AdamOpKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
Y
Yang Yu 已提交
152 153
    using paddle::framework::LoDTensor;
    using paddle::operators::detail::Ref;
154

155 156 157
    T beta1 = static_cast<T>(ctx.Attr<float>("beta1"));
    T beta2 = static_cast<T>(ctx.Attr<float>("beta2"));
    T epsilon = static_cast<T>(ctx.Attr<float>("epsilon"));
Y
Yang Yu 已提交
158
    auto& param = Ref(ctx.Input<LoDTensor>("Param"), "Must set Param");
T
wip  
typhoonzero 已提交
159 160
    // auto& grad = Ref(ctx.Input<LoDTensor>("Grad"), "Must set Grad");
    auto* grad_var = ctx.InputVar("Grad");
Y
Yang Yu 已提交
161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177
    auto& mom1 = Ref(ctx.Input<LoDTensor>("Moment1"), "Must set Moment1");
    auto& mom2 = Ref(ctx.Input<LoDTensor>("Moment2"), "Must set Moment2");
    auto& lr =
        Ref(ctx.Input<LoDTensor>("LearningRate"), "Must set LearningRate");

    auto& beta1_pow =
        Ref(ctx.Input<LoDTensor>("Beta1Pow"), "Must set Beta1Pow");
    auto& beta2_pow =
        Ref(ctx.Input<LoDTensor>("Beta2Pow"), "Must set Beta2Pow");

    auto& param_out =
        Ref(ctx.Output<LoDTensor>("ParamOut"), "Must set ParamOut");
    auto& mom1_out =
        Ref(ctx.Output<LoDTensor>("Moment1Out"), "Must set Moment1Out");
    auto& mom2_out =
        Ref(ctx.Output<LoDTensor>("Moment2Out"), "Must set Moment1Out");

T
wip  
typhoonzero 已提交
178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195
    if (grad_var->IsType<framework::LoDTensor>()) {
      auto& grad = Ref(ctx.Input<LoDTensor>("Grad"), "Must set Grad");
      AdamFunctor<T> functor(
          beta1, beta2, epsilon, beta1_pow.template data<T>(),
          beta2_pow.template data<T>(), mom1.template data<T>(),
          mom1_out.template mutable_data<T>(ctx.GetPlace()),
          mom2.template data<T>(),
          mom2_out.template mutable_data<T>(ctx.GetPlace()),
          lr.template data<T>(), grad.template data<T>(),
          param.template data<T>(),
          param_out.template mutable_data<T>(ctx.GetPlace()));
      platform::ForRange<DeviceContext> for_range(
          static_cast<const DeviceContext&>(ctx.device_context()),
          param.numel());
      for_range(functor);
    } else if (grad_var->IsType<framework::SelectedRows>()) {
      auto& grad =
          Ref(ctx.Input<framework::SelectedRows>("Grad"), "Must set Grad");
T
wip  
typhoonzero 已提交
196 197 198 199 200
      // merge duplicated rows if any.
      scatter::MergeAdd<DeviceContext, T> merge_func;
      auto grad_merge =
          merge_func(ctx.template device_context<DeviceContext>(), grad);
      auto& grad_tensor = grad_merge.value();
T
wip  
typhoonzero 已提交
201
      const T* grad_data = grad_tensor.template data<T>();
D
dzhwinter 已提交
202 203
      int64_t* rows = nullptr;
      if (platform::is_gpu_place(ctx.GetPlace())) {
Y
Yu Yang 已提交
204
        rows = grad_merge.mutable_rows()->CUDAMutableData(ctx.GetPlace());
D
dzhwinter 已提交
205 206 207
      } else {
        rows = grad_merge.mutable_rows()->data();
      }
T
wip  
typhoonzero 已提交
208
      auto row_numel = grad_tensor.numel() / grad_merge.rows().size();
T
wip  
typhoonzero 已提交
209 210 211 212 213 214 215 216

      SparseAdamFunctor<T> functor(
          beta1, beta2, epsilon, beta1_pow.template data<T>(),
          beta2_pow.template data<T>(), mom1.template data<T>(),
          mom1_out.template mutable_data<T>(ctx.GetPlace()),
          mom2.template data<T>(),
          mom2_out.template mutable_data<T>(ctx.GetPlace()),
          lr.template data<T>(), grad_data, param.template data<T>(),
T
typhoonzero 已提交
217
          param_out.template mutable_data<T>(ctx.GetPlace()), rows, row_numel);
T
wip  
typhoonzero 已提交
218 219
      platform::ForRange<DeviceContext> for_range(
          static_cast<const DeviceContext&>(ctx.device_context()),
T
wip  
typhoonzero 已提交
220
          grad_merge.rows().size());
T
wip  
typhoonzero 已提交
221 222 223 224
      for_range(functor);
    } else {
      PADDLE_THROW("Variable type not supported by adam_op");
    }
225 226 227 228 229
  }
};

}  // namespace operators
}  // namespace paddle