reshape_op.cc 26.2 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Y
Yibing Liu 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
Y
Yibing Liu 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
Y
Yibing Liu 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
Y
Yibing Liu 已提交
14

Y
Yi Wang 已提交
15
#include <string>
W
wanghuancoder 已提交
16

Y
yuyang18 已提交
17
#include "paddle/fluid/framework/op_registry.h"
Y
Yi Wang 已提交
18

W
wanghuancoder 已提交
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
namespace paddle {
namespace framework {
class InferShapeContext;
class OpDesc;
}  // namespace framework
namespace imperative {
class OpBase;
}  // namespace imperative
namespace platform {
struct CPUPlace;
struct CUDAPlace;
struct float16;
}  // namespace platform
}  // namespace paddle

Y
Yibing Liu 已提交
34 35 36
namespace paddle {
namespace operators {

37 38 39 40 41 42 43 44
using Tensor = framework::Tensor;

inline std::vector<int> get_new_shape(
    const std::vector<const Tensor *> &list_new_shape_tensor) {
  // get tensor from
  std::vector<int> vec_new_shape;
  for (size_t i = 0; i < list_new_shape_tensor.size(); ++i) {
    auto tensor = list_new_shape_tensor[i];
45 46
    PADDLE_ENFORCE_EQ(
        tensor->dims(), framework::make_ddim({1}),
47 48 49 50 51
        platform::errors::InvalidArgument(
            "If the element type of 'shape' in ReshapeOp is Tensor, "
            "the element's shape must be [1]. But received the element's shape "
            "is [%s]",
            tensor->dims()));
52 53 54 55 56 57 58 59 60 61 62 63 64
    if (platform::is_gpu_place(tensor->place())) {
      framework::Tensor temp;
      TensorCopySync(*tensor, platform::CPUPlace(), &temp);

      vec_new_shape.push_back(static_cast<int32_t>(*temp.data<int32_t>()));
    } else {
      vec_new_shape.push_back(static_cast<int32_t>(*tensor->data<int32_t>()));
    }
  }

  return vec_new_shape;
}

Y
yuyang18 已提交
65 66 67 68 69 70 71 72
class ReshapeOp : public framework::OperatorWithKernel {
 public:
  ReshapeOp(const std::string &type, const framework::VariableNameMap &inputs,
            const framework::VariableNameMap &outputs,
            const framework::AttributeMap &attrs)
      : OperatorWithKernel(type, inputs, outputs, attrs) {}

  void InferShape(framework::InferShapeContext *ctx) const override {
73
    PADDLE_ENFORCE_EQ(ctx->HasInput("X"), true,
74 75
                      platform::errors::InvalidArgument(
                          "Input(X) of ReshapeOp should not be null."));
76
    PADDLE_ENFORCE_EQ(ctx->HasOutput("Out"), true,
77 78
                      platform::errors::InvalidArgument(
                          "Output(Out) of ReshapeOp should not be null."));
Y
yuyang18 已提交
79

80 81
    if (ctx->HasInputs("ShapeTensor")) {
      // top prority shape
82
      auto ShapeTensor = ctx->Inputs("ShapeTensor");
83 84
      PADDLE_ENFORCE_GT(
          ShapeTensor.size(), 0,
85 86 87 88 89
          platform::errors::InvalidArgument(
              "When `shape` in ReshapeOp is a list or tuple "
              "which contains Tensor, the shape's size can't be zero. "
              "But received shape's size is %d.",
              ShapeTensor.size()));
90 91 92 93 94 95 96
      auto infer_shape = ctx->Attrs().Get<std::vector<int>>("shape");
      const int64_t copy_dim_val = 0;
      auto in_dims = ctx->GetInputDim("X");
      for (size_t i = 0; i < infer_shape.size(); ++i) {
        if (infer_shape[i] == copy_dim_val) {
          PADDLE_ENFORCE_LT(
              static_cast<int>(i), in_dims.size(),
97 98 99 100 101
              platform::errors::InvalidArgument(
                  "The index of 0 in `shape` must be less than "
                  "the input tensor X's dimensions. But received shape[%d] "
                  "= 0, X's dimensions = %d, X's shape = [%s].",
                  i, in_dims.size(), in_dims));
102 103 104 105 106 107 108
          infer_shape[i] = in_dims[i];
        }
      }
      auto infer_out_dims = framework::make_ddim(infer_shape);
      ctx->SetOutputDim("Out", infer_out_dims);
      return;
    }
Y
yuyang18 已提交
109

110 111 112 113 114 115 116 117 118 119 120
    const std::vector<int> &shape = ctx->Attrs().Get<std::vector<int>>("shape");
    if (ctx->HasInput("Shape") && shape.empty()) {
      auto shape_dims = ctx->GetInputDim("Shape");
      int num_ele = 1;
      for (int i = 0; i < shape_dims.size(); ++i) {
        num_ele *= shape_dims[i];
      }
      auto vec_dims = std::vector<int>(num_ele, -1);
      auto out_dims = framework::make_ddim(vec_dims);
      ctx->SetOutputDim("Out", out_dims);
      ctx->ShareLoD("X", /*->*/ "Out");
121 122
      return;
    }
123 124

    if (ctx->HasInput("Shape") && !shape.empty() && ctx->IsRuntime()) {
Y
yuyang18 已提交
125 126 127 128 129
      // If true, set the shape of Output(Out) according to Input(Shape) in
      // ReshapeKernel with ExecutionContext. Also check LoD in ReshapeKernel.
      ctx->ShareLoD("X", /*->*/ "Out");
      return;
    }
130

131 132 133 134
    PADDLE_ENFORCE_EQ(!shape.empty(), true,
                      platform::errors::InvalidArgument(
                          "The parameter 'shape' in ReshapeOp must be set. "
                          "But received 'shape' is empty."));
Y
yuyang18 已提交
135 136 137 138 139 140 141 142 143 144 145 146 147
    auto x_dims = ctx->GetInputDim("X");
    auto out_dims = ValidateShape(shape, x_dims);
    ctx->SetOutputDim("Out", out_dims);
    if (x_dims[0] == out_dims[0]) {
      // Only pass LoD when the first dimension of output and Input(X)
      // are the same.
      ctx->ShareLoD("X", /*->*/ "Out");
    }
  }

  static framework::DDim ValidateShape(const std::vector<int> shape,
                                       const framework::DDim &in_dims) {
    const int64_t in_size = framework::product(in_dims);
C
chengduo 已提交
148 149 150
    auto in_dims_vec = framework::vectorize(in_dims);
    bool all_positive = std::all_of(in_dims_vec.cbegin(), in_dims_vec.cend(),
                                    [](int64_t i) { return i > 0; });
Y
yuyang18 已提交
151 152 153 154 155 156 157 158 159 160
    // only one dimension can be set to -1, whose size will be automatically
    // infered.
    const int64_t unk_dim_val = -1;
    const int64_t copy_dim_val = 0;

    std::vector<int64_t> output_shape(shape.size(), 0);
    int64_t capacity = 1;
    int unk_dim_idx = -1;
    for (size_t i = 0; i < shape.size(); ++i) {
      if (shape[i] == unk_dim_val) {
161 162
        PADDLE_ENFORCE_EQ(
            unk_dim_idx, -1,
163 164 165 166
            platform::errors::InvalidArgument(
                "Only one dimension value of 'shape' in ReshapeOp can "
                "be -1. But received shape = [%s], shape[%d] is also -1.",
                framework::make_ddim(shape), i));
Y
yuyang18 已提交
167 168
        unk_dim_idx = i;
      } else if (shape[i] == copy_dim_val) {
169 170
        PADDLE_ENFORCE_LT(
            static_cast<int>(i), in_dims.size(),
171 172 173 174 175 176
            platform::errors::InvalidArgument(
                "The index of 0 in `shape` must be less than "
                "the input tensor X's dimensions. "
                "But received shape = [%s], shape[%d] = 0, X's shape = [%s], "
                "X's dimensions = %d.",
                framework::make_ddim(shape), i, in_dims, in_dims.size()));
Y
yuyang18 已提交
177
      } else {
178 179
        PADDLE_ENFORCE_GT(
            shape[i], 0,
180 181
            platform::errors::InvalidArgument(
                "Each dimension value of 'shape' in ReshapeOp must not "
T
tianshuo78520a 已提交
182
                "be negative except one unknown dimension. "
183 184
                "But received  shape = [%s], shape[%d] = %d.",
                framework::make_ddim(shape), i, shape[i]));
Y
yuyang18 已提交
185 186 187 188 189 190 191 192
      }

      capacity *= (shape[i] ? shape[i] : in_dims[i]);
      output_shape[i] =
          (shape[i] ? static_cast<int64_t>(shape[i]) : in_dims[i]);
    }

    if (unk_dim_idx != -1) {
C
chengduo 已提交
193
      if (all_positive) {
Y
yuyang18 已提交
194 195 196 197 198
        // in_size < 0 and is un-determinate in compile time, skip the check,
        // for example, in_dims = [-1, 8, 1, 1], shape = [-1, 3, 8],
        // capacity = -24, in_size = -8, output_shape[0] = 0
        // the following check will fail.
        output_shape[unk_dim_idx] = -in_size / capacity;
199 200 201 202 203 204 205
        PADDLE_ENFORCE_EQ(
            output_shape[unk_dim_idx] * capacity, -in_size,
            platform::errors::InvalidArgument(
                "The 'shape' attribute in ReshapeOp is invalid. "
                "The input tensor X'size must be divisible by known "
                "capacity of 'shape'. "
                "But received X's shape = [%s], X's size = %d, "
206
                "'shape' is [%s], known capacity of 'shape' is %d.",
207
                in_dims, in_size, framework::make_ddim(shape), capacity));
Y
yuyang18 已提交
208 209 210 211
      } else {
        output_shape[unk_dim_idx] = -1;
      }
    } else {
Y
Yamei-Lee 已提交
212 213 214
      if (all_positive) {
        PADDLE_ENFORCE_EQ(
            capacity, in_size,
215 216 217 218 219 220 221
            platform::errors::InvalidArgument(
                "The 'shape' in ReshapeOp is invalid. "
                "The input tensor X'size must be equal to the capacity of "
                "'shape'. "
                "But received X's shape = [%s], X's size = %d, 'shape' is "
                "[%s], the capacity of 'shape' is %d.",
                in_dims, in_size, framework::make_ddim(shape), capacity));
Y
Yamei-Lee 已提交
222
      }
Y
yuyang18 已提交
223 224 225 226 227 228 229
    }
    return framework::make_ddim(output_shape);
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
230 231 232
    return framework::OpKernelType(
        OperatorWithKernel::IndicateVarDataType(ctx, "X"),
        ctx.device_context());
Y
yuyang18 已提交
233
  }
234 235 236 237 238 239 240 241 242 243

  framework::OpKernelType GetKernelTypeForVar(
      const std::string &var_name, const Tensor &tensor,
      const framework::OpKernelType &expected_kernel_type) const override {
    if (var_name == "ShapeTensor") {
      return expected_kernel_type;
    }
    return framework::OpKernelType(expected_kernel_type.data_type_,
                                   tensor.place(), tensor.layout());
  }
Y
yuyang18 已提交
244 245
};

Y
Yibing Liu 已提交
246 247
class ReshapeOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
248
  void Make() override {
249 250
    AddInput("X", "(Tensor). The input tensor of reshape operator.");
    AddInput("Shape",
251 252 253
             "(Tensor<int32>, optional). Target shape of reshape operator. "
             "It has a higher priority than Attr(shape) but a lower priority "
             "than Input(ShapeTensor). The Attr(shape) still should be "
T
tianshuo78520a 已提交
254
             "set correctly to guarantee shape inference in compile time.")
255
        .AsDispensable();
256 257
    AddInput(
        "ShapeTensor",
258 259 260 261
        "(vector<Tensor<int32>>, optional). Target shape of reshape operator. "
        "It has the highest priority compare with Input(Shape) and "
        "Attr(shape)."
        "The shape of the element in vector must be [1].")
262 263
        .AsDuplicable()
        .AsDispensable();
264
    AddOutput("Out", "(Tensor). The output tensor of reshape operator.");
C
caoying03 已提交
265
    AddAttr<std::vector<int>>(
266 267 268 269
        "shape",
        "(std::vector<int>) Target shape of reshape operator."
        "It has the lowest priority compare with Input(Shape) and "
        " Input(ShapeTensor).")
270
        .SetDefault({});
K
kexinzhao 已提交
271 272
    AddComment(R"DOC(
Reshape Operator.
Y
Yibing Liu 已提交
273

274 275
Reshape Input(X) into the shape specified by Attr(shape) or Input(Shape). The
data in Input(X) are unchanged.
Y
Yibing Liu 已提交
276

C
caoying03 已提交
277
Examples:
Y
Yibing Liu 已提交
278

C
caoying03 已提交
279 280 281 282
1. Given a 3-D tensor Input(X) with a shape [2, 4, 6], and the target shape
specified by Attr(shape) is [6, 8], the reshape operator will transform Input(X)
into a 2-D tensor with shape [6, 8] and leaving Input(X)'s data unchanged.

283
2. Given a 3-D tensor Input(X) with a shape [2, 4, 6], and the target shape
C
caoying03 已提交
284 285 286 287 288 289
specified by Attr(shape) is [2, 3, -1, 2], the reshape operator will transform
Input(X) into a 4-D tensor with shape [2, 3, 4, 2] and leaving Input(X)'s data
unchanged. In this case, one and only dimension of Attr(shape) can be set to -1,
the value of this dimension is inferred from the total element number of
Input(X) and remaining dimensions.

290
3. Given a 3-D tensor Input(X) with a shape [2, 4, 6], and the target shape
C
caoying03 已提交
291 292 293 294
specified by Attr(shape) is [-1, 0, 3, 2], the reshape operator will transform
Input(X) into a 4-D tensor with shape [2, 4, 3, 2] and leaving Input(X)'s data
unchanged. In this case, besides -1, 0 means the actual dimension value is going
to be copied from the corresponding dimension of Input(X).
Y
Yibing Liu 已提交
295

C
caoying03 已提交
296
Note:
Y
Yibing Liu 已提交
297

C
caoying03 已提交
298 299 300
1. One and only one dimension in Attr(shape) can be set -1. In this case,
the actual dimension value will be infered from the total element number of
Input(X) and remaining dimensions.
301 302

2. More than one dimensions in Attr(shape) can be set to 0, which means the real
C
caoying03 已提交
303
dimension value will be copied from Input(X) at runtime. Note that the index of
G
guosheng 已提交
304
0 can not exceed Rank(X). For example, Input(X) is a 3-D tensor with shape
C
caoying03 已提交
305
[2, 3, 4], Attr(shape) = [2, 3, 2, 0] is an invalid input.
306 307

3. Input(Shape) has a higher priority than Attr(shape) if it is provided, while
T
tianshuo78520a 已提交
308
Attr(shape) still should be set correctly to guarantee shape inference in
309
compile-time.
Y
Yibing Liu 已提交
310

Y
Yibing Liu 已提交
311 312 313 314 315 316 317 318 319 320 321 322
)DOC");
  }
};

class ReshapeGradOp : public framework::OperatorWithKernel {
 public:
  ReshapeGradOp(const std::string &type,
                const framework::VariableNameMap &inputs,
                const framework::VariableNameMap &outputs,
                const framework::AttributeMap &attrs)
      : OperatorWithKernel(type, inputs, outputs, attrs) {}

323
  void InferShape(framework::InferShapeContext *ctx) const override {
324 325 326
    PADDLE_ENFORCE_EQ(
        ctx->HasInput("X"), true,
        platform::errors::InvalidArgument("Input(X) shouldn't be null."));
327
    PADDLE_ENFORCE_EQ(ctx->HasInput(framework::GradVarName("Out")), true,
328 329
                      platform::errors::InvalidArgument(
                          "Input(Out@GRAD) shouldn't be null."));
Q
Qiao Longfei 已提交
330
    ctx->SetOutputDim(framework::GradVarName("X"), ctx->GetInputDim("X"));
Y
Yibing Liu 已提交
331
  }
332 333 334 335

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
336 337 338
    return framework::OpKernelType(
        OperatorWithKernel::IndicateVarDataType(ctx, "X"),
        ctx.device_context());
339
  }
Y
Yibing Liu 已提交
340 341
};

Y
yuyang18 已提交
342 343 344 345 346
class ReshapeKernel {
 public:
  void operator()(const framework::ExecutionContext &ctx) const {
    auto *out = ctx.Output<framework::LoDTensor>("Out");
    auto *in = ctx.Input<framework::LoDTensor>("X");
Y
yuyang18 已提交
347

Y
yuyang18 已提交
348
    framework::DDim out_dims = out->dims();
Y
yuyang18 已提交
349

350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372
    auto list_new_shape_tensor =
        ctx.MultiInput<framework::Tensor>("ShapeTensor");
    if (list_new_shape_tensor.size() > 0) {
      // have shape tensor
      auto new_shape = get_new_shape(list_new_shape_tensor);
      out_dims = ReshapeOp::ValidateShape(new_shape, in->dims());

    } else {
      auto *shape_tensor = ctx.HasInput("Shape")
                               ? ctx.Input<framework::LoDTensor>("Shape")
                               : nullptr;

      if (shape_tensor) {
        auto *shape_data = shape_tensor->data<int>();
        framework::Tensor cpu_shape_tensor;
        if (platform::is_gpu_place(shape_tensor->place())) {
          TensorCopySync(*shape_tensor, platform::CPUPlace(),
                         &cpu_shape_tensor);
          shape_data = cpu_shape_tensor.data<int>();
        }
        auto shape =
            std::vector<int>(shape_data, shape_data + shape_tensor->numel());
        out_dims = ReshapeOp::ValidateShape(shape, in->dims());
Y
yuyang18 已提交
373 374
      }
    }
Y
yuyang18 已提交
375

376
    out->Resize(out_dims);
377
    out->mutable_data(ctx.GetPlace(), in->type());
Y
Yiqun Liu 已提交
378 379 380
    framework::TensorCopy(
        *in, ctx.GetPlace(),
        ctx.template device_context<platform::DeviceContext>(), out);
Y
yuyang18 已提交
381 382
    out->Resize(out_dims);
  }
Y
yuyang18 已提交
383 384 385 386 387 388 389
};

class ReshapeGradKernel {
 public:
  void operator()(const framework::ExecutionContext &ctx) const {
    auto *d_out = ctx.Input<framework::Tensor>(framework::GradVarName("Out"));
    auto *d_x = ctx.Output<framework::Tensor>(framework::GradVarName("X"));
D
dzhwinter 已提交
390
    auto in_dims = d_x->dims();
Y
yuyang18 已提交
391

392 393
    d_x->mutable_data(ctx.GetPlace(), d_out->type());
    framework::TensorCopySync(*d_out, ctx.GetPlace(), d_x);
D
dzhwinter 已提交
394
    d_x->Resize(in_dims);
Y
yuyang18 已提交
395
  }
Y
yuyang18 已提交
396 397
};

398 399 400 401 402 403 404 405 406 407 408 409 410 411
class ReshapeDoubleGradKernel {
 public:
  void operator()(const framework::ExecutionContext &ctx) const {
    auto *dd_x = ctx.Input<framework::Tensor>("DDX");
    auto *dd_out = ctx.Output<framework::Tensor>("DDOut");

    auto out_dims = dd_out->dims();

    dd_out->mutable_data(ctx.GetPlace(), dd_x->type());
    framework::TensorCopySync(*dd_x, ctx.GetPlace(), dd_out);
    dd_out->Resize(out_dims);
  }
};

412 413 414 415 416 417 418 419 420 421 422 423 424
// FIXME(zcd): reshape2 adds an intermediate output(XShape) based on reshape,
// the XShape is used to carry the shape and lod of X which will be used in
// reshape_grad, in this way, the framework can reuse the memory of X
// immediately the reshape_op is finished.
// Considering compatibility issues, we could not fix reshape_op
class Reshape2Op : public ReshapeOp {
 public:
  Reshape2Op(const std::string &type, const framework::VariableNameMap &inputs,
             const framework::VariableNameMap &outputs,
             const framework::AttributeMap &attrs)
      : ReshapeOp(type, inputs, outputs, attrs) {}

  void InferShape(framework::InferShapeContext *ctx) const override {
425
    PADDLE_ENFORCE_EQ(ctx->HasOutput("XShape"), true,
426 427
                      platform::errors::InvalidArgument(
                          "Output(XShape) of ReshapeOp should not be null."));
428 429 430 431 432 433 434 435
    const auto &x_dims = ctx->GetInputDim("X");
    std::vector<int64_t> xshape_dims(x_dims.size() + 1);
    xshape_dims[0] = 0;
    for (int i = 0; i < x_dims.size(); ++i) {
      xshape_dims[i + 1] = x_dims[i];
    }
    ctx->SetOutputDim("XShape", framework::make_ddim(xshape_dims));
    ctx->ShareLoD("X", /*->*/ "XShape");
M
minqiyang 已提交
436 437

    ReshapeOp::InferShape(ctx);
438 439 440 441 442 443 444 445 446 447 448
  }
};

class Reshape2OpMaker : public ReshapeOpMaker {
 public:
  void Make() override {
    ReshapeOpMaker::Make();
    AddOutput("XShape",
              "XShape is just used to store the shape and lod of X, which will "
              "be used in FlattenGradOp.")
        .AsIntermediate();
449 450 451 452
    AddAttr<bool>(
        "use_quantizer",
        "(bool, default false) "
        "This parameter is no longer used. Use 'mkldnn_data_type' instead.")
453
        .SetDefault(false);
454 455 456 457 458
    AddAttr<std::string>(
        "mkldnn_data_type",
        "(string, default \"float32\"). Data type of mkldnn kernel")
        .SetDefault("float32")
        .InEnum({"float32", "int8", "bfloat16"});
459 460 461
  }
};

H
hong 已提交
462 463
template <typename T>
class Reshape2GradMaker : public framework::SingleGradOpMaker<T> {
464
 public:
H
hong 已提交
465
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
466

467
  void Apply(GradOpPtr<T> grad_op) const override {
468
    grad_op->SetType("reshape2_grad");
H
hong 已提交
469 470 471 472
    grad_op->SetInput("XShape", this->Output("XShape"));
    grad_op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
    grad_op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
    grad_op->SetAttrMap(this->Attrs());
473 474 475
  }
};

H
hong 已提交
476 477
template <typename T>
class Reshape2DoubleGradMaker : public framework::SingleGradOpMaker<T> {
478
 public:
H
hong 已提交
479
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
480

481
  void Apply(GradOpPtr<T> grad_op) const override {
482
    grad_op->SetType("reshape2_grad_grad");
H
hong 已提交
483 484 485 486
    grad_op->SetInput("DOut", this->Input(framework::GradVarName("Out")));
    grad_op->SetInput("DDX", this->OutputGrad(framework::GradVarName("X")));
    grad_op->SetOutput("DDOut", this->InputGrad(framework::GradVarName("Out")));
    grad_op->SetAttrMap(this->Attrs());
487 488 489
  }
};

490 491 492 493 494 495 496 497 498
class Reshape2GradOp : public framework::OperatorWithKernel {
 public:
  Reshape2GradOp(const std::string &type,
                 const framework::VariableNameMap &inputs,
                 const framework::VariableNameMap &outputs,
                 const framework::AttributeMap &attrs)
      : OperatorWithKernel(type, inputs, outputs, attrs) {}

  void InferShape(framework::InferShapeContext *ctx) const override {
499 500 501
    PADDLE_ENFORCE_EQ(
        ctx->HasInput("XShape"), true,
        platform::errors::InvalidArgument("Input(XShape) shouldn't be null."));
502
    PADDLE_ENFORCE_EQ(ctx->HasInput(framework::GradVarName("Out")), true,
503 504
                      platform::errors::InvalidArgument(
                          "Input(Out@GRAD) shouldn't be null."));
505 506 507 508 509 510 511 512 513
    auto xshape_dims = ctx->GetInputDim("XShape");
    auto x_dims = framework::slice_ddim(xshape_dims, 1, xshape_dims.size());
    ctx->SetOutputDim(framework::GradVarName("X"), x_dims);
    ctx->ShareLoD("XShape", framework::GradVarName("X"));
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
514 515 516
    return framework::OpKernelType(OperatorWithKernel::IndicateVarDataType(
                                       ctx, framework::GradVarName("Out")),
                                   ctx.device_context());
517
  }
518 519 520 521 522 523 524 525 526 527

  framework::OpKernelType GetKernelTypeForVar(
      const std::string &var_name, const Tensor &tensor,
      const framework::OpKernelType &expected_kernel_type) const override {
    if (var_name == "ShapeTensor") {
      return expected_kernel_type;
    }
    return framework::OpKernelType(expected_kernel_type.data_type_,
                                   tensor.place(), tensor.layout());
  }
528 529
};

530 531 532 533 534 535 536 537 538 539
class Reshape2DoubleGradOp : public framework::OperatorWithKernel {
 public:
  Reshape2DoubleGradOp(const std::string &type,
                       const framework::VariableNameMap &inputs,
                       const framework::VariableNameMap &outputs,
                       const framework::AttributeMap &attrs)
      : OperatorWithKernel(type, inputs, outputs, attrs) {}

  void InferShape(framework::InferShapeContext *ctx) const override {
    PADDLE_ENFORCE_EQ(ctx->HasInput("DDX"), true,
540 541
                      platform::errors::InvalidArgument(
                          "Input(X@GRAD_GRAD) shouldn't be null."));
542 543 544 545 546 547 548 549
    if (ctx->HasOutput("DDOut") && ctx->HasInput("DDX")) {
      ctx->ShareDim("DOut", "DDOut");
    }
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
550 551 552
    return framework::OpKernelType(
        OperatorWithKernel::IndicateVarDataType(ctx, "DDX"),
        ctx.device_context());
553 554 555 556 557 558 559 560 561 562 563 564 565
  }

  framework::OpKernelType GetKernelTypeForVar(
      const std::string &var_name, const Tensor &tensor,
      const framework::OpKernelType &expected_kernel_type) const override {
    if (var_name == "ShapeTensor") {
      return expected_kernel_type;
    }
    return framework::OpKernelType(expected_kernel_type.data_type_,
                                   tensor.place(), tensor.layout());
  }
};

566 567
DECLARE_INPLACE_OP_INFERER(ReshapeOpInplaceInferer, {"X", "Out"});
DECLARE_INPLACE_OP_INFERER(ReshapeGradInplaceInferer,
568 569
                           {framework::GradVarName("Out"),
                            framework::GradVarName("X")});
570 571
DECLARE_INPLACE_OP_INFERER(ReshapeDoubleGradInplaceInferer, {"DDX", "DDOut"});
DECLARE_NO_NEED_BUFFER_VARS_INFERER(ReshapeDoubleGradOpNoNeedBufferVarInferer,
Z
Zeng Jinle 已提交
572
                                    "DOut");
D
dzhwinter 已提交
573

Y
Yibing Liu 已提交
574 575 576
}  // namespace operators
}  // namespace paddle
namespace ops = paddle::operators;
577
namespace plat = paddle::platform;
Y
Yibing Liu 已提交
578

H
hong 已提交
579 580 581 582
REGISTER_OPERATOR(
    reshape, ops::ReshapeOp, ops::ReshapeOpMaker,
    paddle::framework::DefaultGradOpMaker<paddle::framework::OpDesc, true>,
    paddle::framework::DefaultGradOpMaker<paddle::imperative::OpBase, true>,
583
    ops::ReshapeOpInplaceInferer);
D
dzhwinter 已提交
584
REGISTER_OPERATOR(reshape_grad, ops::ReshapeGradOp,
585
                  ops::ReshapeGradInplaceInferer);
586

587 588 589 590 591 592 593
REGISTER_OP_CPU_KERNEL_FUNCTOR(reshape, float, ops::ReshapeKernel, double,
                               ops::ReshapeKernel, int, ops::ReshapeKernel,
                               int64_t, ops::ReshapeKernel);
REGISTER_OP_CPU_KERNEL_FUNCTOR(reshape_grad, float, ops::ReshapeGradKernel,
                               double, ops::ReshapeGradKernel, int,
                               ops::ReshapeGradKernel, int64_t,
                               ops::ReshapeGradKernel);
594
REGISTER_OPERATOR(reshape2, ops::Reshape2Op, ops::Reshape2OpMaker,
H
hong 已提交
595 596
                  ops::Reshape2GradMaker<paddle::framework::OpDesc>,
                  ops::Reshape2GradMaker<paddle::imperative::OpBase>,
597
                  ops::ReshapeOpInplaceInferer);
D
dzhwinter 已提交
598
REGISTER_OPERATOR(reshape2_grad, ops::Reshape2GradOp,
H
hong 已提交
599 600
                  ops::Reshape2DoubleGradMaker<paddle::framework::OpDesc>,
                  ops::Reshape2DoubleGradMaker<paddle::imperative::OpBase>,
601
                  ops::ReshapeGradInplaceInferer);
602
REGISTER_OPERATOR(reshape2_grad_grad, ops::Reshape2DoubleGradOp,
603 604
                  ops::ReshapeDoubleGradInplaceInferer,
                  ops::ReshapeDoubleGradOpNoNeedBufferVarInferer);
605

606
REGISTER_OP_CPU_KERNEL_FUNCTOR(reshape2, float, ops::ReshapeKernel, double,
607 608 609
                               ops::ReshapeKernel, int8_t, ops::ReshapeKernel,
                               uint8_t, ops::ReshapeKernel, int,
                               ops::ReshapeKernel, int64_t, ops::ReshapeKernel);
610 611 612 613
REGISTER_OP_CPU_KERNEL_FUNCTOR(reshape2_grad, float, ops::ReshapeGradKernel,
                               double, ops::ReshapeGradKernel, int,
                               ops::ReshapeGradKernel, int64_t,
                               ops::ReshapeGradKernel);
614 615 616 617 618
REGISTER_OP_CPU_KERNEL_FUNCTOR(reshape2_grad_grad, float,
                               ops::ReshapeDoubleGradKernel, double,
                               ops::ReshapeDoubleGradKernel, int,
                               ops::ReshapeDoubleGradKernel, int64_t,
                               ops::ReshapeDoubleGradKernel);
619

Y
yuyang18 已提交
620
#ifdef PADDLE_WITH_CUDA
621 622
REGISTER_OP_CUDA_KERNEL_FUNCTOR(reshape, float, ops::ReshapeKernel, double,
                                ops::ReshapeKernel, int, ops::ReshapeKernel,
623 624
                                int64_t, ops::ReshapeKernel, plat::float16,
                                ops::ReshapeKernel);
625 626 627
REGISTER_OP_CUDA_KERNEL_FUNCTOR(reshape_grad, float, ops::ReshapeGradKernel,
                                double, ops::ReshapeGradKernel, int,
                                ops::ReshapeGradKernel, int64_t,
628
                                ops::ReshapeGradKernel, plat::float16,
629 630 631
                                ops::ReshapeGradKernel);
REGISTER_OP_CUDA_KERNEL_FUNCTOR(reshape2, float, ops::ReshapeKernel, double,
                                ops::ReshapeKernel, int, ops::ReshapeKernel,
632 633
                                int64_t, ops::ReshapeKernel, plat::float16,
                                ops::ReshapeKernel);
634 635 636
REGISTER_OP_CUDA_KERNEL_FUNCTOR(reshape2_grad, float, ops::ReshapeGradKernel,
                                double, ops::ReshapeGradKernel, int,
                                ops::ReshapeGradKernel, int64_t,
637
                                ops::ReshapeGradKernel, plat::float16,
638
                                ops::ReshapeGradKernel);
639 640 641 642 643 644 645

REGISTER_OP_CUDA_KERNEL_FUNCTOR(reshape2_grad_grad, float,
                                ops::ReshapeDoubleGradKernel, double,
                                ops::ReshapeDoubleGradKernel, int,
                                ops::ReshapeDoubleGradKernel, int64_t,
                                ops::ReshapeDoubleGradKernel, plat::float16,
                                ops::ReshapeDoubleGradKernel);
Y
yuyang18 已提交
646
#endif