asp.py 25.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
# Copyright (c) 2021 NVIDIA Corporation.  All rights reserved.
# 
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# 
#     http://www.apache.org/licenses/LICENSE-2.0
# 
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Functions for Auto SParsity (ASP) training and inference.
"""

import copy
import numpy as np
import paddle
22
from paddle.fluid import global_scope, program_guard, layers
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37
from paddle.fluid.initializer import ConstantInitializer
from paddle.fluid.contrib import sparsity

__all__ = [
    'decorate', 'prune_model', 'set_excluded_layers', 'reset_excluded_layers'
]


def set_excluded_layers(main_program, param_names):
    r"""
    Set parameter name of layers which would not be pruned as sparse weights.

    Args:
        main_program (Program, optional): Program with model definition and its parameters.
        param_names (list): A list contains names of parameters.
38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66
    Examples:
        .. code-block:: python

            import paddle
            from paddle.static import sparsity

            paddle.enable_static()

            main_program = paddle.static.Program()
            startup_program = paddle.static.Program()

            with paddle.static.program_guard(main_program, startup_program):
                input_data = paddle.static.data(name='data', shape=[None, 128])
                label = paddle.static.data(name='label', shape=[None, 10])
                hidden = paddle.static.nn.fc(x=input_data, num_flatten_dims=-1, size=32, activation=None, name="need_sparse_fc")
                hidden = paddle.static.nn.fc(x=hidden, num_flatten_dims=-1, size=32, activation=None, name="need_dense_fc")
                prob = paddle.static.nn.fc(x=hidden, num_flatten_dims=-1, size=10, activation=None)
                loss = paddle.mean(paddle.nn.functional.square_error_cost(prob, label))

                # Setup exluded layers out from ASP workflow.
                # Please note, excluded_layers must be set before calling `optimizer.minimize()`.
                sparsity.set_excluded_layers(main_program, ["need_dense_fc"])

                optimizer = paddle.optimizer.SGD(learning_rate=0.1)
                optimizer = paddle.static.amp.decorate(optimizer )
                # Calling sparsity.decorate() to wrap minimize() in optimizer, which 
                # will insert necessary masking operations for ASP workflow.
                optimizer = sparsity.decorate(optimizer)
                optimizer.minimize(loss, startup_program)
67 68 69 70 71 72 73 74 75 76 77 78
    """
    ASPHelper.set_excluded_layers(
        main_program=main_program, param_names=param_names)


def reset_excluded_layers(main_program=None):
    r"""
    Reset exculded layers setting corresponding to :attr:`main_program`. If :attr:`main_program` 
    is None, then all configurations of excluded_layers would be cleaned.

    Args:
        main_program (Program, optional): Program with model definition and its parameters.
79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105
        Examples:
        .. code-block:: python

            import paddle
            from paddle.static import sparsity

            paddle.enable_static()

            main_program = paddle.static.Program()
            startup_program = paddle.static.Program()

            with paddle.static.program_guard(main_program, startup_program):
                input_data = paddle.static.data(name='data', shape=[None, 128])
                label = paddle.static.data(name='label', shape=[None, 10])
                hidden = paddle.static.nn.fc(x=input_data, num_flatten_dims=-1, size=32, activation=None, name="my_first_fc")
                hidden = paddle.static.nn.fc(x=hidden, num_flatten_dims=-1, size=32, activation=None, name="my_second_fc")
                prob = paddle.static.nn.fc(x=hidden, num_flatten_dims=-1, size=10, activation=None)
                loss = paddle.mean(paddle.nn.functional.square_error_cost(prob, label))

                # Setup exluded layers out from ASP workflow.
                # Please note, excluded_layers must be set before calling `optimizer.minimize()`.
                sparsity.set_excluded_layers(main_program, ["my_second_fc"])
                # Now the weights of "my_second_fc" would not be included in Automatic SParsity's workflow.

            # Reset excluded_layers, all FC layers would be included into Automatic SParsity's workflow.
            # Please note, reset_excluded_layers also must be called before calling `optimizer.minimize()`.
            sparsity.reset_excluded_layers(main_program)
106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121
    """
    ASPHelper.reset_excluded_layers(main_program=main_program)


def decorate(optimizer):
    r"""
    Wrap the given optimizer as a OptimizerWithSparsityGuarantee, 
    which would insert necessary ops for ASP workflows when calling minimize()

    Args:
        optimizer (Optimizer): A Optimizer used for training.
    Returns:
        OptimizerWithSparsityGuarantee: A wrapper for ASP to decorate `minimize` function of the given optimizer.
    Examples:
        .. code-block:: python

122
            import paddle
123
            from paddle.static import sparsity
124

125 126
            main_program = paddle.static.Program()
            startup_program = paddle.static.Program()
127

128 129
            paddle.enable_static()

130 131 132 133 134 135
            with paddle.static.program_guard(main_program, startup_program):
                input_data = paddle.static.data(name='data', shape=[None, 128])
                label = paddle.static.data(name='label', shape=[None, 10])
                hidden = paddle.static.nn.fc(x=input_data, num_flatten_dims=-1, size=32, activation=None)
                prob = paddle.static.nn.fc(x=hidden, num_flatten_dims=-1, size=10, activation=None)
                loss = paddle.mean(paddle.nn.functional.square_error_cost(prob, label))
136

137
                optimizer = paddle.optimizer.SGD(learning_rate=0.1)
138
                optimizer = sparsity.decorate(optimizer)
139 140 141 142
                # if do sparse training with Fleet, please replace above decorate with:
                # strategy = paddle.distributed.fleet.DistributedStrategy()
                # strategy.asp = True
                # optimizer = fleet.distributed_optimizer(optimizer, strategy=strategy)
143

144
                optimizer.minimize(loss, startup_program)
145 146 147 148
    """
    return ASPHelper.decorate(optimizer)


149
def prune_model(main_program=None,
150 151
                n=2,
                m=4,
152
                mask_algo='mask_1d',
153 154 155
                with_mask=True):
    r"""
    Pruning parameters of supported layers in :attr:`main_program` via 
156
    specified mask generation function given by :attr:`mask_algo`. This 
157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172
    function supports both training and inference controlled by :attr:`with_mask`.
    If :attr:`with_mask` is True, it would also prune parameter related ASP mask Variables,
    else only prunes parameters.

    *Note*: If parameters are supported and in FP16, please set :attr:`n`=2, :attr:`m`=4, 
    if they in FP32, then :attr:`n`=1, :attr:`m`=2` to further enable Sparse Tensor Core acceleration.

    *Note*: If calling this function with :attr:`with_mask`, it should call `OptimizerWithSparsityGuarantee.minimize` 
    and initialization (`exe.run(startup_program`)) before (For successfully obtain mask Variable). 
    Typically set `with_mask` as true for training (have called `OptimizerWithSparsityGuarantee.minimize`) and false for 
    inference only. To obtain OptimizerWithSparsityGuarantee, please see `sparsity.decoreate()`.

    Args:
        main_program (Program, optional): Program with model definition and its parameters. Default is `paddle.static.default_main_program()
        n (int): n of `n:m` sparse pattern.
        m (int): m of `n:m` sparse pattern.
173 174
        mask_algo (string, optional): The function name to generate spase mask. Default is `mask_1d`.
                                      The vaild inputs should be one of 'mask_1d', 'mask_2d_greedy' and 'mask_2d_best'.
175 176 177 178 179 180
        with_mask (bool, optional): To prune mask Variables related to parameters or not. Ture is purning also, False is not. Defalut is True.
    Returns:
        dictionary: A dictionary with key: `parameter name` (string) and value: its corresponding mask Variable.
    Examples:
        .. code-block:: python

181
            import paddle
182
            from paddle.static import sparsity
183

184 185
            paddle.enable_static()

186 187
            main_program = paddle.static.Program()
            startup_program = paddle.static.Program()
188

189 190 191 192 193 194 195
            with paddle.static.program_guard(main_program, startup_program):
                input_data = paddle.static.data(name='data', shape=[None, 128])
                label = paddle.static.data(name='label', shape=[None, 10])
                hidden = paddle.static.nn.fc(x=input_data, num_flatten_dims=-1, size=32, activation=None, name="need_sparse_fc")
                hidden = paddle.static.nn.fc(x=hidden, num_flatten_dims=-1, size=32, activation=None, name="need_dense_fc")
                prob = paddle.static.nn.fc(x=hidden, num_flatten_dims=-1, size=10, activation=None)
                loss = paddle.mean(paddle.nn.functional.square_error_cost(prob, label))
196

197 198
                # Setup exluded layers out from ASP workflow.
                # Please note, excluded_layers must be set before calling `optimizer.minimize()`.
199
                sparsity.set_excluded_layers(main_program, ["need_dense_fc"])
200

201 202
                optimizer = paddle.optimizer.SGD(learning_rate=0.1)
                optimizer = paddle.static.amp.decorate(optimizer )
203 204 205 206
                # Calling sparsity.decorate() to wrap minimize() in optimizer, which 
                # will insert necessary masking operations for ASP workflow.
                optimizer = sparsity.decorate(optimizer)
                optimizer.minimize(loss, startup_program)
207

208 209 210 211
            device = paddle.device.get_device()
            place = paddle.set_device(device)

            exe = paddle.static.Executor(place)
212 213 214
            exe.run(startup_program)

            # Must call `exe.run(startup_program)` first before calling `sparsity.prune_model`
215
            sparsity.prune_model(main_program, mask_algo='mask_2d_best')
216
    """
217 218 219 220 221 222 223 224 225 226 227
    device = paddle.device.get_device()
    place = paddle.set_device(device)

    MaskAlgo_mapping = {
        'mask_1d': sparsity.MaskAlgo.MASK_1D,
        'mask_2d_greedy': sparsity.MaskAlgo.MASK_2D_GREEDY,
        'mask_2d_best': sparsity.MaskAlgo.MASK_2D_BEST
    }
    assert (mask_algo in MaskAlgo_mapping), \
           'The "mask_algo" should be one of ["mask_1d", "mask_2d_greedy", "mask_2d_best"]'

228 229 230 231 232
    return ASPHelper.prune_model(
        place=place,
        main_program=main_program,
        n=n,
        m=m,
233
        mask_algo=MaskAlgo_mapping[mask_algo],
234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319
        with_mask=with_mask)


class ProgramASPInfo(object):
    r"""
    ProgramASPInfo is a container to keep ASP relevant information of Pragrom. It contains three inner-variables:
    1. __mask_vars (Dictionary): Key is parameter's name and vaule is its corresponding sparse mask Variable object, which is created by `ASPHelper.create_mask_variables`.
    2. __masks (Dictionary): Key is parameter's name and vaule is its corressponding sparse mask Numpy array, which is created by `ASPHelper.prune_model`.
    3. __excluded_layers (List): It stores name of layers which should not involve into ASP workflow.
    """

    def __init__(self):
        self.__mask_vars = {}
        self.__masks = {}
        self.__excluded_layers = []

    def update_mask_vars(self, param_name, var):
        self.__mask_vars[param_name] = var

    def update_masks(self, param_name, var):
        self.__masks[param_name] = var

    def update_excluded_layers(self, param_names):
        self.__excluded_layers.extend(copy.deepcopy(param_names))

    def reset_excluded_layers(self):
        self.__excluded_layers = []

    @property
    def mask_vars(self):
        return self.__mask_vars

    @property
    def masks(self):
        return self.__masks

    @property
    def excluded_layers(self):
        return self.__excluded_layers


class ASPHelper(object):
    r"""
    ASPHelper is a collection of Auto SParsity (ASP) functions to enable 

    1. training models with weights in 2:4 sparse pattern on FP16 or 1:2 sparse pattern on FP32 from scratch.
    2. pruning well-trained models into 2:4 sparse pattern on FP16 or 1:2 sparse pattern on FP32 for fine-tuning.
    """

    MASK_APPENDDED_NAME = '_asp_mask'
    SUPPORTED_LAYERS = {'fc': 'w_0', 'linear': 'w_0', 'conv2d': 'w_0'}

    __asp_info = {}

    @classmethod
    def set_excluded_layers(cls, main_program, param_names):
        r"""
        This is the implementation of `sparsity.set_excluded_layers`, for details please see explanation in `sparsity.set_excluded_layers`.
        """
        asp_info = cls._get_program_asp_info(main_program)
        asp_info.update_excluded_layers(param_names)

    @classmethod
    def reset_excluded_layers(cls, main_program=None):
        r"""
        This is the implementation of `sparsity.reset_excluded_layers`, for details please see explanation in `sparsity.reset_excluded_layers`.
        """
        if main_program is None:
            for asp_info in cls.__asp_info:
                asp_info.reset_excluded_layers()
        else:
            cls._get_program_asp_info(main_program).reset_excluded_layers()

    @staticmethod
    def decorate(optimizer):
        r"""
        This is the implementation of `sparsity.decorate`, for details please see explanation in `sparsity.decorate`.
        """
        return OptimizerWithSparsityGuarantee(optimizer)

    @classmethod
    def prune_model(cls,
                    place,
                    main_program=None,
                    n=2,
                    m=4,
320
                    mask_algo=sparsity.MaskAlgo.MASK_1D,
321 322 323 324
                    with_mask=True):
        r"""
        This is the implementation of `sparsity.prune_model`, for details please see explanation in `sparsity.prune_model`.
        """
325
        checked_func_name = sparsity.CheckMethod.get_checking_method(mask_algo)
326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347

        if main_program is None:
            main_program = paddle.static.default_main_program()

        asp_info = cls._get_program_asp_info(main_program)
        for param in main_program.global_block().all_parameters():
            if ASPHelper._is_supported_layer(main_program, param.name):
                weight_tensor = global_scope().find_var(param.name).get_tensor()
                weight_nparray = np.array(weight_tensor)

                # The double transpose ops here make sure pruning direction consistent with cuSparseLt.
                # SPMMA in cuSparseLt: D = (AxB) + C, where matrix A (mxk) is sparse matrix.
                # cuSparseLt would prune matrix A along k dimension.
                # In sparse training, layer weight matriices is viewed sparse matrix A, so
                # the math fomula should be 'Act(WX + b)'. However, default fomula in PaddlePaddle
                #  is 'Act(XW + b)'. For enabling SPMMA, weights and inputs should be transposed 
                # for computing, Act( (W^T X^T)^T + b). Therefore, we have to prune alog k dimension 
                # of W^T, which is m dimension of W. Moreove, all mask generating functions in 
                # sparsity/utils is row-major pruning. That is the reason we have to transpose weight 
                # matrices beforce invoking create_mask. Then we transpose the result maks to make 
                # sure its shape to be the same as the input weight.
                weight_sparse_mask = sparsity.create_mask(
348
                    weight_nparray.T, func_name=mask_algo, n=n, m=m).T
349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410
                weight_pruned_nparray = np.multiply(weight_nparray,
                                                    weight_sparse_mask)
                weight_tensor.set(weight_pruned_nparray, place)
                assert sparsity.check_sparsity(weight_pruned_nparray.T,  n=n, m=m, func_name=checked_func_name), \
                        'Pruning {} weight matrix failure!!!'.format(param.name)
                if with_mask:
                    weight_mask_param = global_scope().find_var(
                        ASPHelper._get_mask_name(param.name))
                    assert weight_mask_param is not None, \
                        'Cannot find {} variable, please call ASPHelper.minimize' \
                        ' and initialization (exe.run(startup_program)) first!'.format(ASPHelper._get_mask_name(param.name))
                    weight_mask_tensor = weight_mask_param.get_tensor()
                    weight_mask_tensor.set(weight_sparse_mask, place)
                asp_info.update_masks(param.name, weight_sparse_mask)
        return asp_info.masks.copy()

    @staticmethod
    def _get_mask_name(param_name):
        r"""
        Return mask name by given parameter name :attr:`param_name`.

        Args:
            param_name (string): The name of parameter.
        Returns:
            string: The mask name of :attr:`param_name`.
        """
        return param_name + ASPHelper.MASK_APPENDDED_NAME

    @staticmethod
    def _get_not_ASP_relevant_vars(main_program):
        r"""
        Get all parameters's Variables in :attr:`main_program` but excluded ASP mask Variables.

        Args:
            main_program (Program): Program with model definition and its parameters.
        Returns:
            list: A list of parameter Variables in :attr:`main_program` (excluded ASP mask Variables).
        """
        var_list = []
        for param in main_program.global_block().all_parameters():
            if ASPHelper.MASK_APPENDDED_NAME not in param.name:
                var_list.append(param)
        return var_list

    @classmethod
    def _get_program_asp_info(cls, main_program):
        if not main_program in cls.__asp_info:
            cls.__asp_info[main_program] = ProgramASPInfo()
        return cls.__asp_info[main_program]

    @classmethod
    def _is_supported_layer(cls, main_program, param_name):
        r"""
        Verify if given :attr:`param_name` is supported by ASP.

        Args:
            param_name (string): The name of parameter.
        Returns:
            bool: True if it is supported, else False.
        Examples:
            .. code-block:: python

411
              from paddle.static.sparsity.asp import ASPHelper
412

413 414
              main_program = paddle.static.Program()
              startup_program = paddle.static.Program()
415

416 417 418
              with paddle.static.program_guard(main_program, startup_program):
                  input_data = paddle.static.data(name='data', shape=[None, 128])
                  fc = paddle.static.nn.fc(x=input_data, num_flatten_dims=-1, size=32, activation=None)
419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571

              for param in main_program.global_block().all_parameters():
                  ASPHelper._is_supported_layer(main_program, param.name)
              # fc_0.w_0 -> True
              # fc_0.b_0 -> False
        """
        if ASPHelper.MASK_APPENDDED_NAME in param_name:
            return False

        for layer in cls._get_program_asp_info(main_program).excluded_layers:
            if layer in param_name:
                return False

        for name in ASPHelper.SUPPORTED_LAYERS:
            if name in param_name and \
               ASPHelper.SUPPORTED_LAYERS[name] in param_name:
                return True
        return False

    @classmethod
    def _minimize(cls,
                  optimizer,
                  loss,
                  main_program=None,
                  startup_program=None,
                  parameter_list=None,
                  no_grad_set=None):
        r"""
        This function is a decorator of `minimize` function in `Optimizer`.
        There are three steps:

        1. Call :attr:`optimizer`.minimize(:attr:`loss`)
        2. Create sparse mask Tensors according to supported layers in :attr:`main_program`.
        3. Insert masking ops in the end of parameters update.

        *Note*: Please use `ASP.decorate` instead when applying distributed training with `Fleet`. 
        (Due to there is a invisiable graphs optimization in `Fleet.minimize()` which make training graph 
        cannot be modified anymore.)

        Args:
            optimizer (Optimizer): A Optimizer used for training.
            loss (Variable): A Variable containing the value to minimize.
            main_program (Program, optional): Program with model definition and its parameters. Default is `loss.block.program`.
            startup_program (Program, optional): Program for initializing parameters in `parameter_list`. Default is `paddle.static.default_startup_program()`.
            parameter_list (Iterable, optional): Iterable of `Variable` or `Variable.name` to update to minimize `loss`. The default value is None, at this time all parameters will be updated.
            no_grad_set (set, optional): Set of `Variable  or `Variable.name` that don't need to be updated. The default value is None.
        Returns:
            list: operators from :attr:`optimizer`.minimize(:attr:`loss`).
            list: pairs of parameters and their gradients.
        """
        if main_program is None:
            main_program = loss.block.program

        if startup_program is None:
            startup_program = paddle.static.default_startup_program()

        optimizer_ops, params_and_grads = optimizer.minimize(
            loss, startup_program, parameter_list, no_grad_set=no_grad_set)
        cls._create_mask_variables(main_program, startup_program,
                                   params_and_grads)
        cls._insert_sparse_mask_ops(main_program, params_and_grads)
        return optimizer_ops, params_and_grads

    @classmethod
    def _create_mask_variables(cls, main_program, startup_program,
                               params_and_grads):
        r"""
        Create sparse mask Tensors according to supported layers in :attr:`main_program`.
        This function is called in second step of `ASPHelper._minimize`

        Args:
            main_program (Program): Program with model definition and its parameters.
            startup_program (Program): Program for initializing parameters.
            params_and_grads (list): Variable pairs of parameters and their gradients.
        """
        asp_info = cls._get_program_asp_info(main_program)
        with program_guard(main_program, startup_program):
            for param_and_grad in params_and_grads:
                if ASPHelper._is_supported_layer(main_program,
                                                 param_and_grad[0].name):
                    mask_param = layers.create_parameter(
                        name=param_and_grad[0].name +
                        ASPHelper.MASK_APPENDDED_NAME,
                        shape=param_and_grad[0].shape,
                        dtype=param_and_grad[0].dtype,
                        default_initializer=ConstantInitializer(value=1.0))
                    mask_param.stop_gradient = True
                    mask_param.trainable = False
                    asp_info.update_mask_vars(param_and_grad[0].name,
                                              mask_param)

    @classmethod
    def _insert_sparse_mask_ops(cls, main_program, param_grads):
        r"""
        Insert masking ops in the end of parameters update.
        This function is called in third step of `ASPHelper._minimize`

        Args:
            main_program (Program): Program with model definition and its parameters.
            params_and_grads (list): Variable pairs of parameters and their gradients.
        """
        block = main_program.global_block()
        asp_info = cls._get_program_asp_info(main_program)
        for param_grad in param_grads:
            if param_grad[0].name in asp_info.mask_vars:
                block.append_op(
                    type='elementwise_mul',
                    inputs={
                        "X": param_grad[0],
                        'Y': asp_info.mask_vars[param_grad[0].name]
                    },
                    outputs={'Out': param_grad[0]},
                    attrs={'axis': -1,
                           'use_mkldnn': False})


class OptimizerWithSparsityGuarantee(object):
    r"""
    OptimizerWithSparsityGuarantee is a wrapper to decorate `minimize` function of given optimizer by `_minimize` of ASPHelper.
    The decorated `minimize` function would do three things (exactly same as `ASPHelper._minimize`):
    1. Call `minimize` function of given optimizer.
    2. Call `ASPHelper._create_mask_variables` to create mask Variables.
    3. Call `ASPHelper._insert_sparse_mask_ops` to insert weight masking ops in the end of `loss`'s Program.
    """

    def __init__(self, optimizer):
        self._optimizer = optimizer
        self._learning_rate = optimizer._learning_rate
        self._learning_rate_map = optimizer._learning_rate_map

    def minimize(self,
                 loss,
                 startup_program=None,
                 parameter_list=None,
                 no_grad_set=None):
        r"""
        This function is to call `ASPHelper.minimize()` and return its return

        Args:
            loss (Variable): A Variable containing the value to minimize.
            startup_program (Program, optional): Program for initializing parameters in `parameter_list`. Default is `paddle.static.default_startup_program()`.
            parameter_list (Iterable, optional): Iterable of `Variable` or `Variable.name` to update to minimize `loss`. The default value is None, at this time all parameters will be updated.
            no_grad_set (set, optional): Set of `Variable  or `Variable.name` that don't need to be updated. The default value is None.
        Returns:
            list: operators from :attr:`optimizer`.minimize(:attr:`loss`).
            list: pairs of parameters and their gradients.
        """
        return ASPHelper._minimize(
            self._optimizer,
            loss,
            startup_program=startup_program,
            parameter_list=parameter_list,
            no_grad_set=no_grad_set)