Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
Crayon鑫
Paddle
提交
86cb3fb8
P
Paddle
项目概览
Crayon鑫
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
86cb3fb8
编写于
7月 08, 2021
作者:
M
Ming-Xu Huang
提交者:
GitHub
7月 08, 2021
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Distributed Automatic SParsity with Fleet (#33558)
上级
1e5437de
变更
8
隐藏空白更改
内联
并排
Showing
8 changed file
with
352 addition
and
15 deletion
+352
-15
paddle/fluid/framework/distributed_strategy.proto
paddle/fluid/framework/distributed_strategy.proto
+2
-0
python/paddle/distributed/fleet/base/distributed_strategy.py
python/paddle/distributed/fleet/base/distributed_strategy.py
+27
-1
python/paddle/distributed/fleet/meta_optimizers/__init__.py
python/paddle/distributed/fleet/meta_optimizers/__init__.py
+3
-1
python/paddle/distributed/fleet/meta_optimizers/asp_optimizer.py
...paddle/distributed/fleet/meta_optimizers/asp_optimizer.py
+66
-0
python/paddle/fluid/contrib/sparsity/asp.py
python/paddle/fluid/contrib/sparsity/asp.py
+27
-13
python/paddle/fluid/tests/unittests/asp/CMakeLists.txt
python/paddle/fluid/tests/unittests/asp/CMakeLists.txt
+8
-0
python/paddle/fluid/tests/unittests/asp/test_fleet_with_asp.py
...n/paddle/fluid/tests/unittests/asp/test_fleet_with_asp.py
+89
-0
python/paddle/fluid/tests/unittests/asp/test_fleet_with_asp_amp.py
...ddle/fluid/tests/unittests/asp/test_fleet_with_asp_amp.py
+130
-0
未找到文件。
paddle/fluid/framework/distributed_strategy.proto
浏览文件 @
86cb3fb8
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
// Copyright (c) 2021 NVIDIA Corporation. All rights reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
...
...
@@ -189,6 +190,7 @@ message DistributedStrategy {
optional
bool
without_graph_optimization
=
30
[
default
=
false
];
optional
int32
fuse_grad_size_in_num
=
31
[
default
=
1
];
optional
bool
calc_comm_same_stream
=
32
[
default
=
false
];
optional
bool
asp
=
33
[
default
=
false
];
optional
RecomputeConfig
recompute_configs
=
101
;
optional
AMPConfig
amp_configs
=
102
;
...
...
python/paddle/distributed/fleet/base/distributed_strategy.py
浏览文件 @
86cb3fb8
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
# Copyright (c) 2021 NVIDIA Corporation. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
...
...
@@ -446,6 +447,31 @@ class DistributedStrategy(object):
check_configs_key
(
self
.
strategy
.
amp_configs
,
configs
,
"amp_configs"
)
assign_configs_value
(
self
.
strategy
.
amp_configs
,
configs
)
@
property
def
asp
(
self
):
"""
Indicating whether we are using automatic sparsity training
Default Value: False
Examples:
.. code-block:: python
import paddle.distributed.fleet as fleet
strategy = fleet.DistributedStrategy()
strategy.asp = True # by default this is false
"""
return
self
.
strategy
.
asp
@
asp
.
setter
@
is_strict_auto
def
asp
(
self
,
flag
):
if
isinstance
(
flag
,
bool
):
self
.
strategy
.
asp
=
flag
else
:
print
(
"WARNING: asp should have value of bool type"
)
@
property
def
recompute
(
self
):
"""
...
...
python/paddle/distributed/fleet/meta_optimizers/__init__.py
浏览文件 @
86cb3fb8
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
# Copyright (c) 2021 NVIDIA Corporation. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
...
...
@@ -12,6 +13,7 @@
# See the License for the specific language governing permissions and
from
.amp_optimizer
import
AMPOptimizer
from
.asp_optimizer
import
ASPOptimizer
from
.recompute_optimizer
import
RecomputeOptimizer
from
.gradient_merge_optimizer
import
GradientMergeOptimizer
from
.graph_execution_optimizer
import
GraphExecutionOptimizer
...
...
python/paddle/distributed/fleet/meta_optimizers/asp_optimizer.py
0 → 100644
浏览文件 @
86cb3fb8
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
# Copyright (c) 2021 NVIDIA Corporation. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
from
paddle.fluid.contrib.sparsity.asp
import
ASPHelper
from
.meta_optimizer_base
import
MetaOptimizerBase
__all__
=
[]
class
ASPOptimizer
(
MetaOptimizerBase
):
def
__init__
(
self
,
optimizer
):
super
(
ASPOptimizer
,
self
).
__init__
(
optimizer
)
self
.
inner_opt
=
optimizer
# we do not allow meta optimizer to be inner optimizer currently
self
.
meta_optimizers_white_list
=
[
"AMPOptimizer"
,
"LarsOptimizer"
,
"LambOptimizer"
,
"GraphExecutionOptimizer"
,
"RecomputeOptimizer"
,
"GradientMergeOptimizer"
]
self
.
meta_optimizers_black_list
=
[]
def
_set_basic_info
(
self
,
loss
,
role_maker
,
user_defined_optimizer
,
user_defined_strategy
):
super
(
ASPOptimizer
,
self
).
_set_basic_info
(
loss
,
role_maker
,
user_defined_optimizer
,
user_defined_strategy
)
def
_can_apply
(
self
):
if
not
self
.
role_maker
.
_is_collective
:
return
False
if
self
.
user_defined_strategy
.
asp
:
return
True
return
False
def
_disable_strategy
(
self
,
dist_strategy
):
dist_strategy
.
asp
=
False
def
_enable_strategy
(
self
,
dist_strategy
,
context
):
dist_strategy
.
asp
=
True
def
minimize_impl
(
self
,
loss
,
startup_program
=
None
,
parameter_list
=
None
,
no_grad_set
=
None
):
optimize_ops
,
params_grads
=
ASPHelper
.
_minimize
(
self
.
inner_opt
,
loss
,
startup_program
=
startup_program
,
parameter_list
=
parameter_list
,
no_grad_set
=
no_grad_set
)
return
optimize_ops
,
params_grads
python/paddle/fluid/contrib/sparsity/asp.py
浏览文件 @
86cb3fb8
...
...
@@ -64,12 +64,15 @@ def decorate(optimizer):
Examples:
.. code-block:: python
import paddle
import paddle.fluid as fluid
from paddle.fluid.contrib import sparsity
main_program = fluid.Program()
startup_program = fluid.Program()
paddle.enable_static()
with fluid.program_guard(main_program, startup_program):
input_data = fluid.layers.data(name='data', shape=[None, 128])
label = fluid.layers.data(name='label', shape=[None, 10])
...
...
@@ -78,17 +81,13 @@ def decorate(optimizer):
loss = fluid.layers.mean(fluid.layers.square_error_cost(prob, label))
optimizer = fluid.optimizer.SGD(learning_rate=0.1)
optimizer = sparsity.decorate(optimizer)
optimizer.minimize(loss, startup_program)
# if do sparse training with Fleet, please replace above decorate with:
# strategy = paddle.distributed.fleet.DistributedStrategy()
# strategy.asp = True
# optimizer = fleet.distributed_optimizer(optimizer, strategy=strategy)
# When apply distributed training with Fleet
import paddle.distributed.fleet as fleet
optimizer = fluid.optimizer.SGD(learning_rate=0.1)
optimizer = sparsity.decorate(optimizer) # Need to be called before `fleet.distributed_optimizer`
optimizer = fleet.distributed_optimizer(optimizer)
optimizer.minimize(loss, startup_program)
optimizer.minimize(loss, startup_program)
"""
return
ASPHelper
.
decorate
(
optimizer
)
...
...
@@ -126,23 +125,38 @@ def prune_model(place,
Examples:
.. code-block:: python
import paddle
import paddle.fluid as fluid
import paddle.fluid.core as core
from paddle.fluid.contrib import sparsity
paddle.enable_static()
main_program = fluid.Program()
startup_program = fluid.Program()
place = fluid.CUDAPlace(0)
place = paddle.CPUPlace()
if core.is_compiled_with_cuda():
place = paddle.CUDAPlace(0)
with fluid.program_guard(main_program, startup_program):
input_data = fluid.layers.data(name='data', shape=[None, 128])
label = fluid.layers.data(name='label', shape=[None, 10])
hidden = fluid.layers.fc(input=input_data, num_flatten_dims=-1, size=32, act=None)
hidden = fluid.layers.fc(input=input_data, num_flatten_dims=-1, size=32, act=None, name="need_sparse")
hidden = fluid.layers.fc(input=hidden, num_flatten_dims=-1, size=32, act=None, name="need_dense")
prob = fluid.layers.fc(input=hidden, num_flatten_dims=-1, size=10, act=None)
loss = fluid.layers.mean(fluid.layers.square_error_cost(prob, label))
optimizer = decorate(fluid.optimizer.SGD(learning_rate=0.1))
optimizer.minimize(optimizer, loss, main_program, startup_program)
# Setup exluded layers out from ASP workflow.
# Please note, excluded_layers must be set before calling `optimizer.minimize()`.
sparsity.set_excluded_layers(main_program, ["need_dense"])
optimizer = fluid.optimizer.SGD(learning_rate=0.1)
optimizer = fluid.contrib.mixed_precision.decorator.decorate(optimizer )
# Calling sparsity.decorate() to wrap minimize() in optimizer, which
# will insert necessary masking operations for ASP workflow.
optimizer = sparsity.decorate(optimizer)
optimizer.minimize(loss, startup_program)
exe = fluid.Executor(place)
exe.run(startup_program)
...
...
python/paddle/fluid/tests/unittests/asp/CMakeLists.txt
浏览文件 @
86cb3fb8
file
(
GLOB TEST_OPS RELATIVE
"
${
CMAKE_CURRENT_SOURCE_DIR
}
"
"test_*.py"
)
string
(
REPLACE
".py"
""
TEST_OPS
"
${
TEST_OPS
}
"
)
list
(
REMOVE_ITEM TEST_OPS
"test_fleet_with_asp"
}
)
list
(
REMOVE_ITEM TEST_OPS
"test_fleet_with_asp_amp"
}
)
foreach
(
TEST_OP
${
TEST_OPS
}
)
py_test_modules
(
${
TEST_OP
}
MODULES
${
TEST_OP
}
)
endforeach
(
TEST_OP
)
if
(
WITH_DISTRIBUTE
)
py_test_modules
(
test_fleet_with_asp MODULES test_fleet_with_asp ENVS
${
dist_ENVS
}
)
py_test_modules
(
test_fleet_with_asp_amp MODULES test_fleet_with_asp_amp ENVS
${
dist_ENVS
}
)
endif
()
python/paddle/fluid/tests/unittests/asp/test_fleet_with_asp.py
0 → 100644
浏览文件 @
86cb3fb8
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
# Copyright (c) 2021 NVIDIA Corporation. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
paddle.distributed.fleet
as
fleet
import
paddle.distributed.fleet.base.role_maker
as
role_maker
import
unittest
import
paddle
import
paddle.fluid
as
fluid
import
paddle.fluid.core
as
core
import
os
from
paddle.fluid.contrib
import
sparsity
from
paddle.fluid.contrib.sparsity.asp
import
ASPHelper
import
numpy
as
np
cuda_visible_devices
=
os
.
getenv
(
'CUDA_VISIBLE_DEVICES'
)
if
cuda_visible_devices
is
None
or
cuda_visible_devices
==
""
:
os
.
environ
[
'CUDA_VISIBLE_DEVICES'
]
=
'0'
else
:
os
.
environ
[
'CUDA_VISIBLE_DEVICES'
]
=
cuda_visible_devices
.
split
(
','
)[
0
]
paddle
.
enable_static
()
class
TestFleetWithASP
(
unittest
.
TestCase
):
def
setUp
(
self
):
os
.
environ
[
"PADDLE_TRAINER_ENDPOINTS"
]
=
"127.0.0.1:36213"
os
.
environ
[
"PADDLE_CURRENT_ENDPOINTS"
]
=
"127.0.0.1:36213"
os
.
environ
[
"PADDLE_TRAINERS_NUM"
]
=
"1"
os
.
environ
[
"PADDLE_TRAINER_ID"
]
=
"0"
def
net
(
self
,
main_prog
,
startup_prog
):
with
fluid
.
program_guard
(
main_prog
,
startup_prog
):
input_x
=
paddle
.
static
.
data
(
name
=
"x"
,
shape
=
[
-
1
,
32
],
dtype
=
'float32'
)
input_y
=
paddle
.
static
.
data
(
name
=
"y"
,
shape
=
[
-
1
,
1
],
dtype
=
'int64'
)
fc_1
=
fluid
.
layers
.
fc
(
input
=
input_x
,
size
=
64
,
act
=
'tanh'
)
prediction
=
fluid
.
layers
.
fc
(
input
=
fc_1
,
size
=
2
,
act
=
'softmax'
)
cost
=
fluid
.
layers
.
cross_entropy
(
input
=
prediction
,
label
=
input_y
)
avg_cost
=
paddle
.
mean
(
x
=
cost
)
strategy
=
paddle
.
distributed
.
fleet
.
DistributedStrategy
()
strategy
.
asp
=
True
return
avg_cost
,
strategy
,
input_x
,
input_y
def
test_with_asp
(
self
):
fleet
.
init
(
is_collective
=
True
)
train_prog
,
startup_prog
=
fluid
.
Program
(),
fluid
.
Program
()
avg_cost
,
strategy
,
input_x
,
input_y
=
self
.
net
(
train_prog
,
startup_prog
)
with
fluid
.
program_guard
(
train_prog
,
startup_prog
):
optimizer
=
paddle
.
fluid
.
optimizer
.
SGD
(
learning_rate
=
0.01
)
optimizer
=
fleet
.
distributed_optimizer
(
optimizer
,
strategy
=
strategy
)
optimizer
.
minimize
(
avg_cost
)
place
=
fluid
.
CUDAPlace
(
0
)
if
paddle
.
fluid
.
is_compiled_with_cuda
(
)
else
fluid
.
CPUPlace
()
exe
=
fluid
.
Executor
(
place
)
feeder
=
fluid
.
DataFeeder
(
feed_list
=
[
input_x
,
input_y
],
place
=
place
)
exe
.
run
(
startup_prog
)
sparsity
.
prune_model
(
place
,
train_prog
)
data
=
(
np
.
random
.
randn
(
64
,
32
),
np
.
random
.
randint
(
2
,
size
=
(
64
,
1
)))
exe
.
run
(
train_prog
,
feed
=
feeder
.
feed
([
data
]))
for
param
in
train_prog
.
global_block
().
all_parameters
():
if
ASPHelper
.
_is_supported_layer
(
train_prog
,
param
.
name
):
mat
=
np
.
array
(
fluid
.
global_scope
().
find_var
(
param
.
name
)
.
get_tensor
())
self
.
assertTrue
(
sparsity
.
check_sparsity
(
mat
.
T
,
n
=
2
,
m
=
4
))
if
__name__
==
"__main__"
:
unittest
.
main
()
python/paddle/fluid/tests/unittests/asp/test_fleet_with_asp_amp.py
0 → 100644
浏览文件 @
86cb3fb8
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
# Copyright (c) 2021 NVIDIA Corporation. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
paddle.distributed.fleet
as
fleet
import
paddle.distributed.fleet.base.role_maker
as
role_maker
import
unittest
import
paddle
import
paddle.fluid
as
fluid
import
paddle.fluid.core
as
core
import
os
from
paddle.fluid.contrib
import
sparsity
from
paddle.fluid.contrib.sparsity.asp
import
ASPHelper
import
numpy
as
np
cuda_visible_devices
=
os
.
getenv
(
'CUDA_VISIBLE_DEVICES'
)
if
cuda_visible_devices
is
None
or
cuda_visible_devices
==
""
:
os
.
environ
[
'CUDA_VISIBLE_DEVICES'
]
=
'0'
else
:
os
.
environ
[
'CUDA_VISIBLE_DEVICES'
]
=
cuda_visible_devices
.
split
(
','
)[
0
]
paddle
.
enable_static
()
class
TestFleetWithASP
(
unittest
.
TestCase
):
def
setUp
(
self
):
os
.
environ
[
"PADDLE_TRAINER_ENDPOINTS"
]
=
"127.0.0.1:36213"
os
.
environ
[
"PADDLE_CURRENT_ENDPOINTS"
]
=
"127.0.0.1:36213"
os
.
environ
[
"PADDLE_TRAINERS_NUM"
]
=
"1"
os
.
environ
[
"PADDLE_TRAINER_ID"
]
=
"0"
def
net
(
self
,
main_prog
,
startup_prog
):
with
fluid
.
program_guard
(
main_prog
,
startup_prog
):
input_x
=
paddle
.
static
.
data
(
name
=
"x"
,
shape
=
[
-
1
,
32
],
dtype
=
'float32'
)
input_y
=
paddle
.
static
.
data
(
name
=
"y"
,
shape
=
[
-
1
,
1
],
dtype
=
'int64'
)
fc_1
=
fluid
.
layers
.
fc
(
input
=
input_x
,
size
=
64
,
act
=
'tanh'
)
prediction
=
fluid
.
layers
.
fc
(
input
=
fc_1
,
size
=
2
,
act
=
'softmax'
)
cost
=
fluid
.
layers
.
cross_entropy
(
input
=
prediction
,
label
=
input_y
)
avg_cost
=
paddle
.
mean
(
x
=
cost
)
strategy
=
paddle
.
distributed
.
fleet
.
DistributedStrategy
()
strategy
.
asp
=
True
return
avg_cost
,
strategy
,
input_x
,
input_y
def
test_with_asp_and_amp
(
self
):
fleet
.
init
(
is_collective
=
True
)
train_prog
,
startup_prog
=
fluid
.
Program
(),
fluid
.
Program
()
avg_cost
,
strategy
,
input_x
,
input_y
=
self
.
net
(
train_prog
,
startup_prog
)
strategy
.
amp
=
True
with
fluid
.
program_guard
(
train_prog
,
startup_prog
):
optimizer
=
paddle
.
optimizer
.
SGD
(
learning_rate
=
0.01
)
optimizer
=
fleet
.
distributed_optimizer
(
optimizer
,
strategy
=
strategy
)
optimizer
.
minimize
(
avg_cost
)
place
=
fluid
.
CUDAPlace
(
0
)
if
paddle
.
fluid
.
is_compiled_with_cuda
(
)
else
fluid
.
CPUPlace
()
exe
=
fluid
.
Executor
(
place
)
feeder
=
fluid
.
DataFeeder
(
feed_list
=
[
input_x
,
input_y
],
place
=
place
)
exe
.
run
(
startup_prog
)
optimizer
.
amp_init
(
place
)
sparsity
.
prune_model
(
place
,
train_prog
)
data
=
(
np
.
random
.
randn
(
64
,
32
),
np
.
random
.
randint
(
2
,
size
=
(
64
,
1
)))
exe
.
run
(
train_prog
,
feed
=
feeder
.
feed
([
data
]))
for
param
in
train_prog
.
global_block
().
all_parameters
():
if
ASPHelper
.
_is_supported_layer
(
train_prog
,
param
.
name
):
mat
=
np
.
array
(
fluid
.
global_scope
().
find_var
(
param
.
name
)
.
get_tensor
())
self
.
assertTrue
(
sparsity
.
check_sparsity
(
mat
.
T
,
n
=
2
,
m
=
4
))
def
test_with_asp_and_pure_fp16
(
self
):
fleet
.
init
(
is_collective
=
True
)
train_prog
,
startup_prog
=
fluid
.
Program
(),
fluid
.
Program
()
with
paddle
.
static
.
amp
.
fp16_guard
():
avg_cost
,
strategy
,
\
input_x
,
input_y
=
self
.
net
(
train_prog
,
startup_prog
)
strategy
.
amp
=
True
strategy
.
amp_configs
=
{
'use_pure_fp16'
:
True
}
with
fluid
.
program_guard
(
train_prog
,
startup_prog
):
with
paddle
.
static
.
amp
.
fp16_guard
():
optimizer
=
optimizer
=
paddle
.
optimizer
.
Momentum
(
learning_rate
=
0.01
,
multi_precision
=
True
)
optimizer
=
fleet
.
distributed_optimizer
(
optimizer
,
strategy
=
strategy
)
optimizer
.
minimize
(
avg_cost
)
place
=
fluid
.
CUDAPlace
(
0
)
if
paddle
.
fluid
.
is_compiled_with_cuda
(
)
else
fluid
.
CPUPlace
()
exe
=
fluid
.
Executor
(
place
)
feeder
=
fluid
.
DataFeeder
(
feed_list
=
[
input_x
,
input_y
],
place
=
place
)
exe
.
run
(
startup_prog
)
optimizer
.
amp_init
(
place
)
sparsity
.
prune_model
(
place
,
train_prog
)
data
=
(
np
.
random
.
randn
(
64
,
32
),
np
.
random
.
randint
(
2
,
size
=
(
64
,
1
)))
exe
.
run
(
train_prog
,
feed
=
feeder
.
feed
([
data
]))
for
param
in
train_prog
.
global_block
().
all_parameters
():
if
ASPHelper
.
_is_supported_layer
(
train_prog
,
param
.
name
):
mat
=
np
.
array
(
fluid
.
global_scope
().
find_var
(
param
.
name
)
.
get_tensor
())
self
.
assertTrue
(
sparsity
.
check_sparsity
(
mat
.
T
,
n
=
2
,
m
=
4
))
if
__name__
==
"__main__"
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录