operator.cc 26.0 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Q
Qiao Longfei 已提交
2 3 4 5 6 7 8 9 10 11 12 13

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
D
dzhwinter 已提交
14
#include <gflags/gflags.h>
D
dzhwinter 已提交
15
#include <glog/logging.h>
Q
Qiao Longfei 已提交
16

17
#include <algorithm>
D
dzhwinter 已提交
18

Y
Yi Wang 已提交
19 20
#include "paddle/fluid/framework/data_transform.h"
#include "paddle/fluid/framework/executor.h"
21
#include "paddle/fluid/framework/lod_tensor.h"
Y
Yi Wang 已提交
22 23 24
#include "paddle/fluid/framework/operator.h"
#include "paddle/fluid/framework/shape_inference.h"
#include "paddle/fluid/framework/var_type.h"
25
#include "paddle/fluid/platform/profiler.h"
Q
Qiao Longfei 已提交
26

D
dzhwinter 已提交
27
DECLARE_bool(benchmark);
C
chengduoZH 已提交
28 29 30
DEFINE_bool(check_nan_inf, false,
            "Checking whether operator produce NAN/INF or not. It will be "
            "extremely slow so please use this flag wisely.");
D
dzhwinter 已提交
31

Q
Qiao Longfei 已提交
32 33 34
namespace paddle {
namespace framework {

35 36 37 38 39 40
std::vector<std::tuple<platform::Place, LibraryType>> kKernelPriority = {
    std::make_tuple(platform::CUDAPlace(0), LibraryType::kCUDNN),
    std::make_tuple(platform::CUDAPlace(0), LibraryType::kPlain),
    std::make_tuple(platform::CPUPlace(), LibraryType::kMKLDNN),
    std::make_tuple(platform::CPUPlace(), LibraryType::kPlain),
};
D
dzhwinter 已提交
41

Q
qiaolongfei 已提交
42 43 44 45 46 47 48 49 50 51 52
proto::VarType::Type GetDataTypeOfVar(const Variable* var) {
  if (var->IsType<framework::LoDTensor>()) {
    return framework::ToDataType(var->Get<framework::LoDTensor>().type());
  } else if (var->IsType<framework::SelectedRows>()) {
    return framework::ToDataType(
        var->Get<framework::SelectedRows>().value().type());
  } else {
    PADDLE_THROW("Var should be LoDTensor or SelectedRows");
  }
}

53 54
static DDim GetDims(const Scope& scope, const std::string& name,
                    bool get_actual_dim = false) {
55
  Variable* var = scope.FindVar(name);
Q
qiaolongfei 已提交
56 57
  if (var == nullptr) {
    return DDim({-1});
Q
Qiao Longfei 已提交
58 59
  }

M
minqiyang 已提交
60 61
  if (var->IsType<LoDTensor>()) {
    const LoDTensor& tensor = var->Get<LoDTensor>();
M
minqiyang 已提交
62
    if (UNLIKELY(!tensor.IsInitialized())) {
63
      return DDim({-1});
64
    }
M
minqiyang 已提交
65 66 67 68 69 70 71
    return tensor.dims();
  } else if (var->IsType<SelectedRows>()) {
    if (get_actual_dim) {
      return var->Get<SelectedRows>().value().dims();
    } else {
      return var->Get<SelectedRows>().GetCompleteDims();
    }
72 73 74 75 76
  } else {
    return DDim({-1});
  }
}

D
dzhwinter 已提交
77 78 79 80 81
static std::string GetDtype(const Scope& scope, const std::string& name) {
  Variable* var = scope.FindVar(name);
  if (var == nullptr) {
    return "";
  }
82

M
minqiyang 已提交
83 84 85
  if (var->IsType<LoDTensor>()) {
    const LoDTensor& tensor = var->Get<LoDTensor>();
    if (UNLIKELY(!tensor.IsInitialized())) {
86 87
      return "";
    }
M
minqiyang 已提交
88 89 90 91
    return DataTypeToString(ToDataType(tensor.type()));
  } else if (var->IsType<SelectedRows>()) {
    return DataTypeToString(
        ToDataType(var->Get<SelectedRows>().value().type()));
D
dzhwinter 已提交
92 93 94 95 96
  } else {
    return "";
  }
}

97 98 99 100 101 102
static int GetRowSize(const Scope& scope, const std::string& name) {
  Variable* var = scope.FindVar(name);
  if (var == nullptr) {
    return -1;
  }

M
minqiyang 已提交
103 104
  if (var->IsType<SelectedRows>()) {
    return var->Get<SelectedRows>().rows().size();
105 106 107 108 109
  }

  return -1;
}

Q
Qiao Longfei 已提交
110 111 112 113 114 115 116 117
static LoD GetLoD(const Scope& scope, const std::string& name) {
  Variable* var = scope.FindVar(name);
  auto default_lod = LoD({{}});

  if (var == nullptr) {
    return default_lod;
  }

M
minqiyang 已提交
118 119 120
  if (var->IsType<LoDTensor>()) {
    const LoDTensor& tensor = var->Get<LoDTensor>();
    if (UNLIKELY(!tensor.IsInitialized())) {
121 122
      return default_lod;
    }
M
minqiyang 已提交
123
    return tensor.lod();
Q
Qiao Longfei 已提交
124 125 126 127 128
  } else {
    return default_lod;
  }
}

129
void OperatorBase::Run(const Scope& scope, const platform::Place& place) {
130
  VLOG(10) << "- " << DebugStringEx(&scope);
131 132 133 134 135 136 137 138 139
  if (platform::is_gpu_place(place)) {
#ifndef PADDLE_WITH_CUDA
    PADDLE_THROW("Cannot run operator on place %s", place);
#else
    auto dev_id = boost::get<platform::CUDAPlace>(place).device;
    platform::SetDeviceId(dev_id);
#endif
  }
  RunImpl(scope, place);
140
  VLOG(10) << "+ " << DebugStringEx(&scope);
141 142
}

143 144 145 146 147 148 149 150
bool OperatorBase::HasInputs(const std::string& name) const {
  if (inputs_.find(name) != inputs_.end()) {
    return true;
  } else {
    return false;
  }
}

151
std::string OperatorBase::Input(const std::string& name) const {
Y
Yu Yang 已提交
152
  auto& ins = Inputs(name);
Y
Yu Yang 已提交
153
  PADDLE_ENFORCE_LE(ins.size(), 1UL,
154 155
                    "Operator %s's input %s should contain only one variable.",
                    type_, name);
Y
Yu Yang 已提交
156
  return ins.empty() ? kEmptyVarName : ins[0];
Y
Yan Chunwei 已提交
157 158
}

Y
Yu Yang 已提交
159 160
const std::vector<std::string>& OperatorBase::Inputs(
    const std::string& name) const {
Y
Yu Yang 已提交
161
  auto it = inputs_.find(name);
162 163
  PADDLE_ENFORCE(it != inputs_.end(), "Operator %s does not have the input %s.",
                 type_, name);
Y
Yu Yang 已提交
164
  return it->second;
Y
Yan Chunwei 已提交
165 166
}

167 168 169 170 171 172 173 174
bool OperatorBase::HasOutputs(const std::string& name) const {
  if (outputs_.find(name) != outputs_.end()) {
    return true;
  } else {
    return false;
  }
}

175
std::string OperatorBase::Output(const std::string& name) const {
Y
Yu Yang 已提交
176
  auto& outs = Outputs(name);
Y
Yu Yang 已提交
177
  PADDLE_ENFORCE_LE(outs.size(), 1UL,
178 179
                    "Operator %s's output %s should contain only one variable.",
                    type_, name);
Y
Yu Yang 已提交
180
  return outs.empty() ? kEmptyVarName : outs[0];
Y
Yan Chunwei 已提交
181 182
}

Y
Yu Yang 已提交
183 184
const std::vector<std::string>& OperatorBase::Outputs(
    const std::string& name) const {
Y
Yu Yang 已提交
185
  auto it = outputs_.find(name);
186 187
  PADDLE_ENFORCE(it != outputs_.end(),
                 "Operator %s does not have an output called %s.", type_, name);
Y
Yu Yang 已提交
188
  return it->second;
Y
Yan Chunwei 已提交
189 190
}

191
std::string OperatorBase::DebugStringEx(const Scope* scope) const {
Q
Qiao Longfei 已提交
192
  std::stringstream ss;
Y
Yu Yang 已提交
193
  ss << "Op(" << type_ << "), inputs:{";
Y
Yu Yang 已提交
194 195
  for (auto it = inputs_.begin(); it != inputs_.end();) {
    auto& input = *it;
Y
Yu Yang 已提交
196 197 198
    ss << input.first << "[";
    for (size_t i = 0; i < input.second.size(); ++i) {
      ss << input.second[i];
199
      if (scope) {
200 201 202 203
        int row_size = GetRowSize(*scope, input.second[i]);
        if (row_size >= 0) {
          ss << "[row_size=" << row_size << "]";
        }
D
dzhwinter 已提交
204 205
        std::string dtype = GetDtype(*scope, input.second[i]);
        ss << ":" << dtype;
206
        ss << "[" << GetDims(*scope, input.second[i], true) << "]";
Q
Qiao Longfei 已提交
207
        ss << "(" << GetLoD(*scope, input.second[i]) << ")";
208
      }
Y
Yu Yang 已提交
209 210 211
      if (i != input.second.size() - 1) {
        ss << ", ";
      }
212
    }
Y
Yu Yang 已提交
213
    ss << "]";
Y
Yu Yang 已提交
214 215
    ++it;
    if (it != inputs_.end()) {
216 217
      ss << ", ";
    }
Q
Qiao Longfei 已提交
218
  }
Y
Yu Yang 已提交
219
  ss << "}, outputs:{";
Y
Yu Yang 已提交
220 221
  for (auto it = outputs_.begin(); it != outputs_.end();) {
    auto& output = *it;
Y
Yu Yang 已提交
222 223 224
    ss << output.first << "[";
    for (size_t i = 0; i < output.second.size(); ++i) {
      ss << output.second[i];
225
      if (scope) {
226 227 228 229
        int row_size = GetRowSize(*scope, output.second[i]);
        if (row_size >= 0) {
          ss << "[row_size=" << row_size << "]";
        }
230
        ss << "[" << GetDims(*scope, output.second[i], true) << "]";
Q
Qiao Longfei 已提交
231
        ss << "(" << GetLoD(*scope, output.second[i]) << ")";
232
      }
Y
Yu Yang 已提交
233 234 235
      if (i != output.second.size() - 1) {
        ss << ", ";
      }
236
    }
Y
Yu Yang 已提交
237
    ss << "]";
Y
Yu Yang 已提交
238 239
    ++it;
    if (it != outputs_.end()) {
240 241
      ss << ", ";
    }
Q
Qiao Longfei 已提交
242
  }
Y
Yu Yang 已提交
243
  ss << "}.";
Q
Qiao Longfei 已提交
244 245 246
  return ss.str();
}

Y
Yu Yang 已提交
247
OperatorBase::OperatorBase(const std::string& type,
Y
Yu Yang 已提交
248 249
                           const VariableNameMap& inputs,
                           const VariableNameMap& outputs,
Y
Yu Yang 已提交
250 251
                           const AttributeMap& attrs)
    : type_(type), inputs_(inputs), outputs_(outputs), attrs_(attrs) {
252 253
  GenerateTemporaryNames();
  CheckAllInputOutputSet();
Y
Yu Yang 已提交
254
}
255

Q
qijun 已提交
256 257
std::vector<std::string> OperatorBase::InputVars() const {
  std::vector<std::string> ret_val;
Y
Yu Yang 已提交
258
  for (auto& o : inputs_) {
Q
qijun 已提交
259 260 261 262 263 264
    ret_val.reserve(ret_val.size() + o.second.size());
    ret_val.insert(ret_val.end(), o.second.begin(), o.second.end());
  }
  return ret_val;
}

Y
Yu Yang 已提交
265 266 267 268 269 270 271 272 273 274
std::vector<std::string> OperatorBase::OutputVars(bool has_intermediate) const {
  std::vector<std::string> ret_val;
  if (has_intermediate) {
    // push all outputs into ret_val
    for (auto& o : outputs_) {
      ret_val.reserve(ret_val.size() + o.second.size());
      ret_val.insert(ret_val.end(), o.second.begin(), o.second.end());
    }
    return ret_val;
  }
Y
Yu Yang 已提交
275
  auto& info = OpInfoMap::Instance().Get(Type());
Y
Yu Yang 已提交
276 277

  // get all OpProto::Var for outputs
Y
Yu Yang 已提交
278
  for (auto& o : info.Proto().outputs()) {
Y
Yu Yang 已提交
279 280 281 282 283 284 285 286 287
    // ignore all intermediate output
    if (o.intermediate()) continue;
    auto out = outputs_.find(o.name());
    if (out != outputs_.end()) {
      ret_val.reserve(ret_val.size() + out->second.size());
      ret_val.insert(ret_val.end(), out->second.begin(), out->second.end());
    }
  }
  return ret_val;
D
dongzhihong 已提交
288 289
}

290 291 292
void OperatorBase::CheckAllInputOutputSet() const {
  auto& info_map = OpInfoMap::Instance();
  auto* op_info = info_map.GetNullable(Type());
Y
Yu Yang 已提交
293
  if (op_info == nullptr || op_info->proto_ == nullptr) return;
294 295

  for (auto& in : op_info->Proto().inputs()) {
296 297 298 299
    if (!in.dispensable()) {
      PADDLE_ENFORCE(inputs_.find(in.name()) != inputs_.end(),
                     "Operator %s's input, %s, is not set", Type(), in.name());
    }
300 301 302
  }

  for (auto& out : op_info->Proto().outputs()) {
303 304 305 306 307
    if (!out.dispensable()) {
      PADDLE_ENFORCE(outputs_.find(out.name()) != outputs_.end(),
                     "Operator %s's output, %s, is not set", Type(),
                     out.name());
    }
308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323
  }
}

void OperatorBase::GenerateTemporaryNames() {
  static std::atomic<size_t> gUniqId(0UL);
  for (auto& output : outputs_) {
    for (auto& output_name : output.second) {
      if (output_name == kTempVarName) {
        output_name += type_;
        output_name += "@";
        output_name += std::to_string(gUniqId.fetch_add(1));
      }
    }
  }
}

324 325 326 327
static bool VarIsTensor(const Variable* var) {
  return var->IsType<LoDTensor>() || var->IsType<SelectedRows>();
}

328
static const Tensor* GetTensorFromVar(Variable* var) {
Q
QI JUN 已提交
329
  if (var->IsType<LoDTensor>()) {
330
    return var->GetMutable<LoDTensor>();
Q
QI JUN 已提交
331
  } else if (var->IsType<SelectedRows>()) {
332
    return var->GetMutable<SelectedRows>()->mutable_value();
Q
QI JUN 已提交
333
  } else {
Y
Yang Yang 已提交
334 335
    PADDLE_THROW("Variable type_id %s, expect LoDTensor/SelectedRows.",
                 var->Type().name());
Q
QI JUN 已提交
336 337 338 339 340
  }
}

static Tensor* GetMutableTensorFromVar(Variable* var) {
  if (var->IsType<LoDTensor>()) {
341
    return var->GetMutable<LoDTensor>();
Q
QI JUN 已提交
342
  } else if (var->IsType<SelectedRows>()) {
343
    return var->GetMutable<SelectedRows>()->mutable_value();
Q
QI JUN 已提交
344
  } else {
Y
Yang Yang 已提交
345 346
    PADDLE_THROW("Variable type_id %s, expect LoDTensor/SelectedRows.",
                 var->Type().name());
Q
QI JUN 已提交
347 348 349
  }
}

350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381
bool ExecutionContext::HasInput(const std::string& name) const {
  if (!op_.HasInputs(name)) {
    return false;
  }
  auto& ins = Inputs(name);
  size_t length = ins.size();
  if (length == 0) {
    return false;
  }
  PADDLE_ENFORCE_EQ(length, 1UL,
                    "Input %s should not have more than one inputs", name);
  auto arg = ins[0];
  auto* var = arg == kEmptyVarName ? nullptr : scope_.FindVar(arg);
  return var != nullptr;
}

bool ExecutionContext::HasOutput(const std::string& name) const {
  if (!op_.HasOutputs(name)) {
    return false;
  }
  auto& outs = Outputs(name);
  size_t length = outs.size();
  if (length == 0) {
    return false;
  }
  PADDLE_ENFORCE_EQ(length, 1UL,
                    "Output %s should not have more than one inputs", name);
  auto arg = outs[0];
  auto* var = arg == kEmptyVarName ? nullptr : scope_.FindVar(arg);
  return var != nullptr;
}

382
template <>
383
const Tensor* ExecutionContext::Input<Tensor>(const std::string& name) const {
384
  auto* var = InputVar(name);
385 386
  return var == nullptr ? nullptr
                        : GetTensorFromVar(const_cast<Variable*>(var));
387 388 389
}

template <>
390
const std::vector<const Tensor*> ExecutionContext::MultiInput<Tensor>(
391 392 393 394
    const std::string& name) const {
  auto names = op().Inputs(name);
  std::vector<const Tensor*> res;
  res.reserve(names.size());
395 396 397 398 399
  std::transform(names.begin(), names.end(), std::back_inserter(res),
                 [&](const std::string& sub_name) {
                   auto var = scope_.FindVar(sub_name);
                   return var == nullptr ? nullptr : GetTensorFromVar(var);
                 });
400 401 402 403
  return res;
}

template <>
404
Tensor* ExecutionContext::Output<Tensor>(const std::string& name) const {
405
  auto var = OutputVar(name);
Q
QI JUN 已提交
406
  return var == nullptr ? nullptr : GetMutableTensorFromVar(var);
407 408 409
}

template <>
410
std::vector<Tensor*> ExecutionContext::MultiOutput<Tensor>(
411 412 413 414
    const std::string& name) const {
  auto names = op().Outputs(name);
  std::vector<Tensor*> res;
  res.reserve(names.size());
415 416
  std::transform(names.begin(), names.end(), std::back_inserter(res),
                 [&](const std::string& sub_name) {
417 418
                   auto var = scope_.FindVar(sub_name);
                   return var == nullptr ? nullptr
Q
QI JUN 已提交
419
                                         : GetMutableTensorFromVar(var);
420
                 });
421 422 423
  return res;
}

Y
Yu Yang 已提交
424 425 426 427 428 429 430 431 432 433 434 435 436 437 438
bool OpSupportGPU(const std::string& op_type) {
  auto& all_kernels = OperatorWithKernel::AllOpKernels();
  auto it = all_kernels.find(op_type);
  if (it == all_kernels.end()) {
    // All control operator must support GPU
    return true;
  }
  for (auto& kern_pair : it->second) {
    if (platform::is_gpu_place(kern_pair.first.place_)) {
      return true;
    }
  }
  return false;
}

439 440 441 442 443 444
class RuntimeInferShapeContext : public InferShapeContext {
 public:
  RuntimeInferShapeContext(const OperatorBase& op, const Scope& scope)
      : op_(op), scope_(scope) {}

  bool HasInput(const std::string& name) const override {
445 446 447
    if (!op_.HasInputs(name)) {
      return false;
    }
448 449 450 451 452
    auto& ins = Inputs(name);
    size_t length = ins.size();
    if (length == 0) {
      return false;
    }
F
fengjiayi 已提交
453 454
    PADDLE_ENFORCE_EQ(length, 1UL,
                      "Input %s should not have more than one inputs", name);
455 456 457 458 459 460
    auto ipt = ins[0];
    auto* var = ipt == kEmptyVarName ? nullptr : scope_.FindVar(ipt);
    return var != nullptr;
  }

  bool HasOutput(const std::string& name) const override {
461 462 463
    if (!op_.HasOutputs(name)) {
      return false;
    }
464 465 466 467 468
    auto& outs = Outputs(name);
    size_t length = outs.size();
    if (length == 0) {
      return false;
    }
F
fengjiayi 已提交
469 470
    PADDLE_ENFORCE_EQ(length, 1UL,
                      "Output %s should not have more than one inputs", name);
471 472 473 474 475 476
    auto ipt = outs[0];
    auto* var = ipt == kEmptyVarName ? nullptr : scope_.FindVar(ipt);
    return var != nullptr;
  }

  bool HasInputs(const std::string& name) const override {
477 478 479
    if (!op_.HasInputs(name)) {
      return false;
    }
480 481 482 483 484 485 486 487 488 489 490 491 492
    auto inputs = op_.Inputs(name);
    if (inputs.empty()) {
      return false;
    }
    for (auto& input : inputs) {
      if (scope_.FindVar(input) == nullptr) {
        return false;
      }
    }
    return true;
  }

  bool HasOutputs(const std::string& name) const override {
493 494 495
    if (!op_.HasOutputs(name)) {
      return false;
    }
496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519
    auto outputs = op_.Outputs(name);
    if (outputs.empty()) {
      return false;
    }
    for (auto& output : outputs) {
      if (scope_.FindVar(output) == nullptr) {
        return false;
      }
    }
    return true;
  }

  AttrReader Attrs() const override { return AttrReader(op_.Attrs()); }

  const std::vector<std::string>& Inputs(
      const std::string& name) const override {
    return op_.Inputs(name);
  }

  const std::vector<std::string>& Outputs(
      const std::string& name) const override {
    return op_.Outputs(name);
  }

Q
Qiao Longfei 已提交
520 521 522 523 524 525 526 527 528 529 530 531
  void ShareLoD(const std::string& in, const std::string& out, size_t i = 0,
                size_t j = 0) const override {
    PADDLE_ENFORCE_LT(i, Inputs(in).size());
    PADDLE_ENFORCE_LT(j, Outputs(out).size());
    Variable* in_var = scope_.FindVar(Inputs(in)[i]);
    Variable* out_var = scope_.FindVar(Outputs(out)[j]);
    if (!in_var->IsType<LoDTensor>()) return;
    PADDLE_ENFORCE(out_var->IsType<LoDTensor>(),
                   "The %d-th output of Output(%s) must be LoDTensor.", j, out);
    auto in_tensor = in_var->Get<LoDTensor>();
    auto* out_tensor = out_var->GetMutable<LoDTensor>();
    out_tensor->set_lod(in_tensor.lod());
D
dzhwinter 已提交
532

M
mozga-intel 已提交
533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551
// TODO(dzhwinter) : reuse ShareLoD in most operators.
// Need to call ShareLayout explicitly in sequence related ops.
// Shall we have a better method to shared info between in/out Tensor?
#ifdef PADDLE_WITH_MKLDNN
    // Fix me: ugly workaround below
    // Correct solution:
    //    set_layout() should NOT be called here (i.e. ShareLoD). Instead,
    //    layout of output tensor should be set "manually" in Compute()
    //    of each OPKernel. The reason layout should NOT be shared between
    //    input and output "automatically" (now by InferShape()->ShareLoD())
    //    is that layout transform may occur after InferShape().
    // Workaround:
    //    Skip set_layout() when input layout is kMKLDNN
    //    This is to avoid kMKLDNN is populated wrongly into a non-MKLDNN
    //    OPKernel. In all MKLDNN OPkernel, set_layout(kMKLDNN) should be called
    //    in Compute()
    if (in_tensor.layout() != DataLayout::kMKLDNN)
#endif
      out_tensor->set_layout(in_tensor.layout());
D
dzhwinter 已提交
552 553 554 555 556 557 558 559 560 561 562 563 564 565
  }

  void ShareLayout(const std::string& in, const std::string& out, size_t i = 0,
                   size_t j = 0) const {
    PADDLE_ENFORCE_LT(i, Inputs(in).size());
    PADDLE_ENFORCE_LT(j, Outputs(out).size());
    Variable* in_var = scope_.FindVar(Inputs(in)[i]);
    Variable* out_var = scope_.FindVar(Outputs(out)[j]);
    if (!in_var->IsType<LoDTensor>()) return;
    PADDLE_ENFORCE(out_var->IsType<LoDTensor>(),
                   "The %d-th output of Output(%s) must be LoDTensor.", j, out);
    auto in_tensor = in_var->Get<LoDTensor>();
    auto* out_tensor = out_var->GetMutable<LoDTensor>();
    out_tensor->set_layout(in_tensor.layout());
Q
Qiao Longfei 已提交
566 567
  }

568 569 570
  bool IsRuntime() const override { return true; }

 protected:
571 572
  DDim GetDim(const std::string& name) const override {
    Variable* var = scope_.FindVar(name);
F
fengjiayi 已提交
573
    PADDLE_ENFORCE_NOT_NULL(var);
574 575 576 577 578
    if (var->IsType<LoDTensor>()) {
      return var->Get<LoDTensor>().dims();
    } else if (var->IsType<SelectedRows>()) {
      return var->Get<SelectedRows>().GetCompleteDims();
    } else {
F
fengjiayi 已提交
579 580 581 582 583 584 585
      PADDLE_THROW(
          "Only LoDTensor/SelectedRows support 'GetDim', but Variable %s's "
          "type_id is %s.",
          name, var->Type().name());
    }
  }

F
fengjiayi 已提交
586
  std::vector<DDim> GetRepeatedDims(const std::string& name) const override {
Y
Yu Yang 已提交
587
    PADDLE_THROW("Only compile time support this method");
588 589 590 591 592 593 594 595 596
  }

  void SetDim(const std::string& name, const DDim& dim) override {
    Variable* var = scope_.FindVar(name);
    if (var->IsType<LoDTensor>()) {
      var->GetMutable<LoDTensor>()->Resize(dim);
    } else if (var->IsType<SelectedRows>()) {
      var->GetMutable<SelectedRows>()->set_height(dim[0]);
    } else {
Y
Yang Yang 已提交
597 598
      PADDLE_THROW("Variable %s type_id %s, expect LoDTensor/SelectedRows.",
                   name, var->Type().name());
599 600 601
    }
  }

F
fengjiayi 已提交
602 603
  void SetRepeatedDims(const std::string& name,
                       const std::vector<DDim>& dims) override {
Y
Yu Yang 已提交
604
    PADDLE_THROW("Only compile time support this method");
F
fengjiayi 已提交
605 606
  }

607
  proto::VarType::Type GetVarType(const std::string& name) const override {
608 609 610 611
    auto* var = scope_.FindVar(name);
    return ToVarType(var->Type());
  }

F
fengjiayi 已提交
612 613 614 615
  InferShapeVarPtr GetVarPtr(const std::string& name) override {
    return scope_.FindVar(name);
  }

616
 private:
617 618 619 620
  const OperatorBase& op_;
  const Scope& scope_;
};

C
chengduoZH 已提交
621 622 623 624 625
static void CheckTensorNANOrInf(const std::string& name,
                                const framework::Tensor& tensor) {
  if (tensor.memory_size() == 0) {
    return;
  }
S
sneaxiy 已提交
626
  if (!IsType<float>(tensor.type()) && !IsType<double>(tensor.type())) {
C
chengduoZH 已提交
627 628 629 630 631 632 633 634
    return;
  }
  PADDLE_ENFORCE(!framework::TensorContainsInf(tensor),
                 "Tensor %s contains Inf", name);
  PADDLE_ENFORCE(!framework::TensorContainsNAN(tensor),
                 "Tensor %s contains NAN", name);
}

635 636
void OperatorWithKernel::RunImpl(const Scope& scope,
                                 const platform::Place& place) const {
637 638
  RuntimeInferShapeContext infer_shape_ctx(*this, scope);
  this->InferShape(&infer_shape_ctx);
Y
Yu Yang 已提交
639
  platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance();
640
  auto* dev_ctx = pool.Get(place);
641 642 643 644

  // For profiling, don't move out of this function because that will result
  // in the failure of multi-GPU profiling.
  platform::RecordEvent record_event(Type(), dev_ctx);
645 646 647 648
  // check if op[type] has kernel registered.
  auto& all_op_kernels = AllOpKernels();
  auto kernels_iter = all_op_kernels.find(type_);
  if (kernels_iter == all_op_kernels.end()) {
Y
Yu Yang 已提交
649 650
    PADDLE_THROW(
        "There are no kernels which are registered in the %s operator.", type_);
651 652
  }

Q
qiaolongfei 已提交
653 654
  OpKernelMap& kernels = kernels_iter->second;

655 656
  // TODO(dzhwinter) : kernel fallback mechanism will be added when all the
  // transform functions are ready.
Q
qiaolongfei 已提交
657

658 659 660 661
  // for (auto& candidate : kKernelPriority) {
  //   Do selection
  // }

Y
yuyang18 已提交
662 663
  auto expected_kernel_key =
      this->GetExpectedKernelType(ExecutionContext(*this, scope, *dev_ctx));
Q
qiaolongfei 已提交
664 665
  VLOG(3) << "expected_kernel_key:" << expected_kernel_key;

666
  auto kernel_iter = kernels.find(expected_kernel_key);
667
#ifdef PADDLE_WITH_MKLDNN
P
Paweł Żelazko 已提交
668
  // workaround for missing MKLDNN kernel when FLAGS_use_mkldnn env var is set
669 670
  if (kernel_iter == kernels.end() &&
      expected_kernel_key.library_type_ == LibraryType::kMKLDNN) {
P
Paweł Żelazko 已提交
671
    VLOG(3) << "missing MKLDNN kernel: fallbacking to PLAIN one";
672 673 674 675 676
    expected_kernel_key.library_type_ = LibraryType::kPlain;
    expected_kernel_key.data_layout_ = DataLayout::kAnyLayout;
    kernel_iter = kernels.find(expected_kernel_key);
  }
#endif
677 678 679 680 681
  if (kernel_iter == kernels.end()) {
    PADDLE_THROW("op %s does not have kernel for %s", type_,
                 KernelTypeToString(expected_kernel_key));
  }

Y
yuyang18 已提交
682 683 684 685
  // do data transformScope &transfer_scope;
  std::vector<std::string> transfered_inplace_vars;
  auto* transfer_scope =
      TryTransferData(scope, expected_kernel_key, &transfered_inplace_vars);
686

Y
yuyang18 已提交
687 688 689 690 691 692
  // exec scope is the scope that kernel actually executed on.
  const Scope& exec_scope =
      (transfer_scope == nullptr ? scope : *transfer_scope);

  if (!(expected_kernel_key.place_ == dev_ctx->GetPlace())) {
    dev_ctx = pool.Get(expected_kernel_key.place_);
693
  }
Q
QI JUN 已提交
694

Y
yuyang18 已提交
695
  kernel_iter->second(ExecutionContext(*this, exec_scope, *dev_ctx));
D
dzhwinter 已提交
696

Y
yuyang18 已提交
697 698 699
  if (!transfered_inplace_vars.empty()) {
    // there is inplace variable has been transfered.
    TransferInplaceVarsBack(scope, transfered_inplace_vars, *transfer_scope);
700 701
  }

D
dzhwinter 已提交
702
  /*For profiling/benchmark only*/
D
dzhwinter 已提交
703
  if (FLAGS_benchmark) {
Y
yuyang18 已提交
704
    dev_ctx->Wait();
D
dzhwinter 已提交
705
  }
C
chengduoZH 已提交
706 707 708

  if (FLAGS_check_nan_inf) {
    for (auto& vname : OutputVars(true)) {
Y
yuyang18 已提交
709
      auto* var = exec_scope.FindVar(vname);
C
chengduoZH 已提交
710 711 712
      if (var == nullptr) continue;
      if (var->IsType<framework::LoDTensor>()) {
        CheckTensorNANOrInf(vname, var->Get<framework::LoDTensor>());
713 714
      } else if (var->IsType<framework::SelectedRows>()) {
        CheckTensorNANOrInf(vname, var->Get<framework::SelectedRows>().value());
C
chengduoZH 已提交
715 716 717
      }
    }
  }
Q
Qiao Longfei 已提交
718
}
Y
yuyang18 已提交
719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769
void OperatorWithKernel::TransferInplaceVarsBack(
    const Scope& scope, const std::vector<std::string>& inplace_vars,
    const Scope& transfer_scope) const {
  for (auto& var_name : inplace_vars) {
    VLOG(3) << "share inplace var " + var_name + " back to it's original scope";
    auto* original_tensor = GetMutableTensorFromVar(scope.FindVar(var_name));
    auto* transformed_tensor =
        GetTensorFromVar(transfer_scope.FindVar(var_name));
    original_tensor->ShareDataWith(*transformed_tensor);
  }
}

Scope* OperatorWithKernel::TryTransferData(
    const Scope& scope, const OpKernelType& expected_kernel_key,
    std::vector<std::string>* transfered_inplace_vars) const {
  Scope* new_scope = nullptr;
  for (auto& var_name_item : Inputs()) {
    for (auto& var_name : var_name_item.second) {
      auto* var = scope.FindVar(var_name);
      // Only tensor can be tranfer to another device.
      if (var == nullptr || !VarIsTensor(var)) {
        continue;
      }

      auto* tensor_in = GetTensorFromVar(var);
      if (!tensor_in->IsInitialized()) {
        continue;
      }

      auto kernel_type_for_var = GetKernelTypeForVar(
          var_name_item.first, *tensor_in, expected_kernel_key);

      if (!NeedTransform(kernel_type_for_var, expected_kernel_key)) {
        continue;
      }

      auto out_var_names = OutputVars(true);
      if (std::find(out_var_names.begin(), out_var_names.end(), var_name) !=
          out_var_names.end()) {
        transfered_inplace_vars->emplace_back(var_name);
      }

      VLOG(3) << "Transform Variable " << var_name << " from "
              << kernel_type_for_var << " to " << expected_kernel_key;

      if (new_scope == nullptr) {
        new_scope = &scope.NewScope();
      }

      auto* trans_var = new_scope->Var(var_name);
      Tensor out;
Y
yuyang18 已提交
770
      TransformData(expected_kernel_key, kernel_type_for_var, *tensor_in, &out);
Y
yuyang18 已提交
771 772 773 774 775 776
      SetTensorToVariable(*var, out, trans_var);
    }
  }

  return new_scope;
}
Q
Qiao Longfei 已提交
777

778
proto::VarType::Type OperatorWithKernel::IndicateDataType(
Y
Yu Yang 已提交
779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795
    const ExecutionContext& ctx) const {
  auto& scope = ctx.scope();
  int data_type = -1;
  for (auto& input : this->inputs_) {
    for (auto& ipt_name : input.second) {
      auto* var = scope.FindVar(ipt_name);
      if (var != nullptr) {
        const Tensor* t = nullptr;
        if (var->IsType<Tensor>()) {
          t = &var->Get<Tensor>();
        } else if (var->IsType<LoDTensor>()) {
          t = &var->Get<LoDTensor>();
        } else if (var->IsType<SelectedRows>()) {
          t = &(var->Get<SelectedRows>().value());
        }
        if (t != nullptr) {
          int tmp = static_cast<int>(ToDataType(t->type()));
796 797 798 799
          PADDLE_ENFORCE(
              tmp == data_type || data_type == -1,
              "DataType of Paddle Op %s must be the same. Get %d != %d", Type(),
              data_type, tmp);
Y
Yu Yang 已提交
800 801 802 803 804 805
          data_type = tmp;
        }
      }
    }
  }
  PADDLE_ENFORCE(data_type != -1, "DataType should be indicated by input");
806
  return static_cast<proto::VarType::Type>(data_type);
Y
Yu Yang 已提交
807
}
808

809 810 811 812 813 814 815 816
OpKernelType OperatorWithKernel::GetExpectedKernelType(
    const ExecutionContext& ctx) const {
  return OpKernelType(IndicateDataType(ctx), ctx.GetPlace());
}

OpKernelType OperatorWithKernel::GetKernelTypeForVar(
    const std::string& var_name, const Tensor& tensor,
    const OpKernelType& expected_kernel_type) const {
M
mozga-intel 已提交
817 818
  return OpKernelType(expected_kernel_type.data_type_, tensor.place(),
                      tensor.layout());
819 820
}

Q
Qiao Longfei 已提交
821
}  // namespace framework
L
liaogang 已提交
822
}  // namespace paddle