api_impl.cc 12.1 KB
Newer Older
X
Xin Pan 已提交
1 2
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Y
Yan Chunwei 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
X
Xin Pan 已提交
6

Y
Yan Chunwei 已提交
7
http://www.apache.org/licenses/LICENSE-2.0
X
Xin Pan 已提交
8

Y
Yan Chunwei 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
X
Xin Pan 已提交
14 15

#include <algorithm>
D
dzhwinter 已提交
16
#include <fstream>
X
Xin Pan 已提交
17 18 19 20 21 22 23
#include <map>
#include <set>
#include <sstream>
#include <string>
#include <utility>
#include <vector>

24
#include "paddle/fluid/framework/feed_fetch_method.h"
L
Luo Tao 已提交
25
#include "paddle/fluid/inference/api/api_impl.h"
D
dzhwinter 已提交
26
#include "paddle/fluid/inference/api/timer.h"
27 28 29
#include "paddle/fluid/platform/profiler.h"

DEFINE_bool(profile, false, "Turn on profiler for fluid");
X
Xin Pan 已提交
30 31 32

namespace paddle {

33 34 35 36
void NativePaddlePredictor::PrepareFeedFetch() {
  for (auto *op : inference_program_->Block(0).AllOps()) {
    if (op->Type() == "feed") {
      int idx = boost::get<int>(op->GetAttr("col"));
L
luotao1 已提交
37
      if (feeds_.size() <= (size_t)idx) {
38 39 40 41 42 43
        feeds_.resize(idx + 1);
      }
      feeds_[idx] = op;
      feed_names_[op->Output("Out")[0]] = idx;
    } else if (op->Type() == "fetch") {
      int idx = boost::get<int>(op->GetAttr("col"));
L
luotao1 已提交
44
      if (fetchs_.size() <= (size_t)idx) {
45 46 47 48 49 50 51
        fetchs_.resize(idx + 1);
      }
      fetchs_[idx] = op;
    }
  }
}

T
tensor-tang 已提交
52 53
bool NativePaddlePredictor::Init(
    std::shared_ptr<framework::Scope> parent_scope) {
X
Xin Pan 已提交
54
  VLOG(3) << "Predictor::init()";
D
dzhwinter 已提交
55
#if !defined(_WIN32)
56 57 58 59 60 61 62 63
  if (FLAGS_profile) {
    LOG(WARNING) << "Profiler is actived, might affect the performance";
    LOG(INFO) << "You can turn off by set gflags '-profile false'";

    auto tracking_device = config_.use_gpu ? platform::ProfilerState::kAll
                                           : platform::ProfilerState::kCPU;
    platform::EnableProfiler(tracking_device);
  }
D
dzhwinter 已提交
64
#endif
D
dzhwinter 已提交
65
  VLOG(3) << "before Place";
Y
Yan Chunwei 已提交
66
  if (config_.use_gpu) {
X
Xin Pan 已提交
67 68 69 70
    place_ = paddle::platform::CUDAPlace(config_.device);
  } else {
    place_ = paddle::platform::CPUPlace();
  }
D
dzhwinter 已提交
71
  VLOG(3) << "before scope";
T
tensor-tang 已提交
72 73 74
  if (parent_scope) {
    scope_ = parent_scope;
    sub_scope_ = &(parent_scope->NewScope());
T
tensor-tang 已提交
75
    PADDLE_ENFORCE_NOT_NULL(sub_scope_, "create sub scope fail");
76
  } else {
D
dzhwinter 已提交
77
    VLOG(3) << "Before InitDevices";
78
    paddle::framework::InitDevices(false);
D
dzhwinter 已提交
79
    VLOG(3) << "after InitDevices";
80 81
    scope_.reset(new paddle::framework::Scope());
  }
D
dzhwinter 已提交
82
  VLOG(3) << "after scope";
X
Xin Pan 已提交
83
  executor_.reset(new paddle::framework::Executor(place_));
D
dzhwinter 已提交
84
  VLOG(3) << "executor";
X
Xin Pan 已提交
85 86 87 88
  // Initialize the inference program
  if (!config_.model_dir.empty()) {
    // Parameters are saved in separate files sited in
    // the specified `dirname`.
D
dzhwinter 已提交
89
    VLOG(3) << config_.model_dir;
90 91
    inference_program_ = paddle::inference::Load(executor_.get(), scope_.get(),
                                                 config_.model_dir);
D
dzhwinter 已提交
92

D
dzhwinter 已提交
93
    VLOG(3) << "load model finish";
X
Xin Pan 已提交
94 95 96 97
  } else if (!config_.prog_file.empty() && !config_.param_file.empty()) {
    // All parameters are saved in a single file.
    // The file names should be consistent with that used
    // in Python API `fluid.io.save_inference_model`.
D
dzhwinter 已提交
98 99 100 101 102
    VLOG(3) << "load program before";
    auto exe = executor_.get();
    VLOG(3) << "executor_";
    auto sc = scope_.get();
    VLOG(3) << "scope_";
X
Xin Pan 已提交
103 104
    inference_program_ = paddle::inference::Load(
        executor_.get(), scope_.get(), config_.prog_file, config_.param_file);
D
dzhwinter 已提交
105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129
    // VLOG(3) << "modify the program!";
    // {
    //   std::ofstream ofs("program.txt", std::ios::out);
    //   std::string s = inference_program_->Proto()->SerializeAsString();
    //   ofs.write(s.data(), s.size());
    //   ofs.close();
    // }

    auto &block = inference_program_->Block(0);
    for (auto *op_desc : block.AllOps()) {
      if (op_desc->HasAttr("use_cudnn")) {
        op_desc->SetAttr("use_cudnn", false);
      }
      if (op_desc->HasAttr("workspace_size_MB")) {
        op_desc->SetAttr("workspace_size_MB", 0);
      }
    }

    // {
    //   std::ofstream ofs("after_program.txt", std::ios::out);
    //   std::string s = inference_program_->Proto()->SerializeAsString();
    //   ofs.write(s.data(), s.size());
    //   ofs.close();
    // }

D
dzhwinter 已提交
130
    VLOG(3) << "load program finish";
X
Xin Pan 已提交
131 132 133 134
  } else {
    LOG(ERROR) << "fail to load inference model.";
    return false;
  }
D
dzhwinter 已提交
135 136 137
  VLOG(3) << "pointer" << inference_program_.get();

  VLOG(3) << "prepare before";
X
Xin Pan 已提交
138
  ctx_ = executor_->Prepare(*inference_program_, 0);
D
dzhwinter 已提交
139
  VLOG(3) << "prepare finished";
140 141
  executor_->CreateVariables(*inference_program_,
                             sub_scope_ ? sub_scope_ : scope_.get(), 0);
D
dzhwinter 已提交
142
  VLOG(3) << "create variables";
Y
Yan Chunwei 已提交
143

X
Xin Pan 已提交
144
  // Get the feed_target_names and fetch_target_names
145
  PrepareFeedFetch();
D
dzhwinter 已提交
146
  VLOG(3) << "feed fetch";
X
Xin Pan 已提交
147 148 149
  return true;
}

150
NativePaddlePredictor::~NativePaddlePredictor() {
D
dzhwinter 已提交
151
#if !defined(_WIN32)
152 153 154 155
  if (FLAGS_profile) {
    platform::DisableProfiler(platform::EventSortingKey::kTotal,
                              "./profile.log");
  }
D
dzhwinter 已提交
156
#endif
157 158 159
  if (sub_scope_) {
    scope_->DeleteScope(sub_scope_);
  }
L
Luo Tao 已提交
160
}
161

Y
Yan Chunwei 已提交
162
bool NativePaddlePredictor::Run(const std::vector<PaddleTensor> &inputs,
163 164
                                std::vector<PaddleTensor> *output_data,
                                int batch_size) {
X
Xin Pan 已提交
165
  VLOG(3) << "Predictor::predict";
D
dzhwinter 已提交
166
  using Timer = paddle::inference::Timer;
X
Xin Pan 已提交
167 168 169
  Timer timer;
  timer.tic();
  // set feed variable
170
  std::vector<framework::LoDTensor> feeds;
171 172
  framework::Scope *scope = sub_scope_ != nullptr ? sub_scope_ : scope_.get();
  if (!SetFeed(inputs, scope)) {
X
Xin Pan 已提交
173 174 175 176 177
    LOG(ERROR) << "fail to set feed";
    return false;
  }
  // Run the inference program
  // if share variables, we need not create variables
178
  VLOG(4) << "Run prepared context";
179 180 181
  executor_->RunPreparedContext(ctx_.get(), scope,
                                false, /* don't create local scope each time*/
                                false /* don't create variable eatch time */);
182
  VLOG(4) << "Finish prepared context";
183 184
  // get fetch variable
  if (!GetFetch(output_data, scope)) {
185
    LOG(ERROR) << "fail to get fetches";
X
Xin Pan 已提交
186 187 188 189 190 191
    return false;
  }
  VLOG(3) << "predict cost: " << timer.toc() << "ms";
  return true;
}

Y
Yan Chunwei 已提交
192
std::unique_ptr<PaddlePredictor> NativePaddlePredictor::Clone() {
X
Xin Pan 已提交
193
  VLOG(3) << "Predictor::clone";
Y
Yan Chunwei 已提交
194 195
  std::unique_ptr<PaddlePredictor> cls(new NativePaddlePredictor(config_));

196
  if (!dynamic_cast<NativePaddlePredictor *>(cls.get())->Init(scope_)) {
Y
Yan Chunwei 已提交
197
    LOG(ERROR) << "fail to call Init";
X
Xin Pan 已提交
198 199
    return nullptr;
  }
J
Fix mac  
JiabinYang 已提交
200 201 202 203
#ifdef __clang__
  // fix clang compile error
  return cls;
#else
204 205
  // fix manylinux compile error.
  return std::move(cls);
J
Fix mac  
JiabinYang 已提交
206
#endif
X
Xin Pan 已提交
207 208
}

Y
Yan Chunwei 已提交
209
bool NativePaddlePredictor::SetFeed(const std::vector<PaddleTensor> &inputs,
210
                                    framework::Scope *scope) {
X
Xin Pan 已提交
211
  VLOG(3) << "Predictor::set_feed";
212
  if (inputs.size() != feeds_.size()) {
X
Xin Pan 已提交
213 214 215
    LOG(ERROR) << "wrong feed input size.";
    return false;
  }
216
  for (size_t i = 0; i < inputs.size(); ++i) {
217 218
    framework::LoDTensor input;
    framework::DDim ddim = framework::make_ddim(inputs[i].shape);
X
Xin Pan 已提交
219 220
    void *input_ptr;
    if (inputs[i].dtype == PaddleDType::INT64) {
221
      input_ptr = input.mutable_data<int64_t>(ddim, platform::CPUPlace());
X
Xin Pan 已提交
222
    } else if (inputs[i].dtype == PaddleDType::FLOAT32) {
223
      input_ptr = input.mutable_data<float>(ddim, platform::CPUPlace());
X
Xin Pan 已提交
224 225 226 227 228 229
    } else {
      LOG(ERROR) << "unsupported feed type " << inputs[i].dtype;
      return false;
    }

    // TODO(panyx0718): Init LoDTensor from existing memcpy to save a copy.
230
    std::memcpy(static_cast<void *>(input_ptr), inputs[i].data.data(),
231
                inputs[i].data.length());
Y
Yan Chunwei 已提交
232 233 234 235 236 237
    // TODO(Superjomn) Low performance, need optimization for heavy LoD copy.
    framework::LoD lod;
    for (auto &level : inputs[i].lod) {
      lod.emplace_back(level);
    }
    input.set_lod(lod);
238 239
    int idx = -1;
    if (config_.specify_input_name) {
X
polish  
Xin Pan 已提交
240
      idx = feed_names_[inputs[i].name];
241 242 243 244
    } else {
      idx = boost::get<int>(feeds_[i]->GetAttr("col"));
    }
    framework::SetFeedVariable(scope, input, "feed", idx);
X
Xin Pan 已提交
245 246 247
  }
  return true;
}
L
luotao1 已提交
248 249 250 251 252 253 254 255 256 257 258 259 260
template <typename T>
void NativePaddlePredictor::GetFetchOne(const framework::LoDTensor &fetch,
                                        PaddleTensor *output) {
  std::vector<int> shape;
  auto dims_i = fetch.dims();
  auto lod = fetch.lod();
  const T *output_ptr = fetch.data<T>();
  auto num = fetch.numel();
  std::vector<T> data;
  if (0 == lod.size()) {
    std::copy(output_ptr, output_ptr + num, std::back_inserter(data));
    for (int j = 0; j < dims_i.size(); ++j) {
      shape.push_back(dims_i[j]);
X
Xin Pan 已提交
261
    }
L
luotao1 已提交
262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283
  } else {
    // for batch detection
    // image[0] -> output[0] shape {145, 6}
    // image[1] -> output[1] shape {176, 6}
    // then,
    // the batch output shape {321, 6}
    // the lod {{0, 145, 321}}
    // so we should append output[0] to {176, 6}
    size_t max_dim = 0;
    for (size_t j = 1; j < lod[0].size(); j++) {
      max_dim = std::max(max_dim, lod[0][j] - lod[0][j - 1]);
    }
    size_t common_dim = lod[0].back() == 0 ? 0 : num / lod[0].back();
    if (max_dim > 0) {
      data.resize((lod[0].size() - 1) * max_dim * common_dim, 0);
    }
    for (size_t j = 1; j < lod[0].size(); j++) {
      size_t start = lod[0][j - 1] * common_dim;
      size_t end = lod[0][j] * common_dim;
      if (end > start) {
        std::copy(output_ptr + start, output_ptr + end,
                  data.begin() + (j - 1) * max_dim * common_dim);
X
Xin Pan 已提交
284 285
      }
    }
L
luotao1 已提交
286 287 288 289
    shape.push_back(lod[0].size() - 1);
    shape.push_back(max_dim);
    for (int j = 1; j < dims_i.size(); ++j) {
      shape.push_back(dims_i[j]);
290
    }
L
luotao1 已提交
291 292 293 294 295 296 297 298 299 300 301 302 303
  }

  output->shape = shape;
  auto &buffer = output->data;
  if (buffer.empty() || buffer.length() < sizeof(T) * data.size()) {
    buffer.Resize(sizeof(T) * data.size());
  }
  std::memcpy(buffer.data(), data.data(), buffer.length());
  // copy LoD
  for (const auto &level : fetch.lod()) {
    output->lod.emplace_back(level);
  }
}
X
Xin Pan 已提交
304

305 306
bool NativePaddlePredictor::GetFetch(std::vector<PaddleTensor> *outputs,
                                     framework::Scope *scope) {
X
Xin Pan 已提交
307
  VLOG(3) << "Predictor::get_fetch";
308 309 310
  outputs->resize(fetchs_.size());
  for (size_t i = 0; i < fetchs_.size(); ++i) {
    int idx = boost::get<int>(fetchs_[i]->GetAttr("col"));
L
luotao1 已提交
311 312
    PADDLE_ENFORCE((size_t)idx == i);
    framework::LoDTensor &fetch =
313
        framework::GetFetchVariable(*scope, "fetch", idx);
L
luotao1 已提交
314 315 316 317 318 319 320 321
    auto type = fetch.type();
    auto output = &(outputs->at(i));
    if (type == typeid(float)) {
      GetFetchOne<float>(fetch, output);
      output->dtype = PaddleDType::FLOAT32;
    } else if (type == typeid(int64_t)) {
      GetFetchOne<int64_t>(fetch, output);
      output->dtype = PaddleDType::INT64;
X
Xin Pan 已提交
322
    } else {
L
luotao1 已提交
323
      LOG(ERROR) << "unknown type, only support float32 and int64 now.";
Y
Yan Chunwei 已提交
324
    }
X
Xin Pan 已提交
325 326 327 328
  }
  return true;
}

329
template <>
330 331
std::unique_ptr<PaddlePredictor> CreatePaddlePredictor<
    NativeConfig, PaddleEngineKind::kNative>(const NativeConfig &config) {
Y
Yan Chunwei 已提交
332 333 334
  VLOG(3) << "create NativePaddlePredictor";
  if (config.use_gpu) {
    // 1. GPU memeroy
D
dzhwinter 已提交
335
    VLOG(3) << "before check";
D
dzhwinter 已提交
336
    // PADDLE_ENFORCE_GT(
D
dzhwinter 已提交
337
    //    config.fraction_of_gpu_memory, 0.f,
D
dzhwinter 已提交
338 339
    //    "fraction_of_gpu_memory in the config should be set to range (0.,
    //    1.]");
D
dzhwinter 已提交
340
    VLOG(3) << "failed on first";
341
    PADDLE_ENFORCE_GE(config.device, 0, "Invalid device id %d", config.device);
D
dzhwinter 已提交
342
    VLOG(3) << "after flags";
Y
Yan Chunwei 已提交
343 344 345 346 347
    std::vector<std::string> flags;
    if (config.fraction_of_gpu_memory >= 0.0f ||
        config.fraction_of_gpu_memory <= 0.95f) {
      flags.push_back("dummpy");
      std::string flag = "--fraction_of_gpu_memory_to_use=" +
D
dzhwinter 已提交
348
                         std::to_string(config.fraction_of_gpu_memory);
Y
Yan Chunwei 已提交
349 350 351
      flags.push_back(flag);
      VLOG(3) << "set flag: " << flag;
      framework::InitGflags(flags);
D
dzhwinter 已提交
352
      VLOG(3) << "flags setting";
Y
Yan Chunwei 已提交
353
    }
X
Xin Pan 已提交
354
  }
D
dzhwinter 已提交
355
  VLOG(3) << "Init flags Done";
Y
Yan Chunwei 已提交
356
  std::unique_ptr<PaddlePredictor> predictor(new NativePaddlePredictor(config));
T
tensor-tang 已提交
357
  if (!dynamic_cast<NativePaddlePredictor *>(predictor.get())->Init(nullptr)) {
X
Xin Pan 已提交
358 359
    return nullptr;
  }
J
Fix mac  
JiabinYang 已提交
360
#ifdef __clang__
J
Jiabin Yang 已提交
361
  // fix clang compile error
J
Fix mac  
JiabinYang 已提交
362 363
  return predictor;
#else
364
  return std::move(predictor);
J
Fix mac  
JiabinYang 已提交
365
#endif
X
Xin Pan 已提交
366 367 368
}

}  // namespace paddle