api_impl.cc 11.3 KB
Newer Older
X
Xin Pan 已提交
1 2
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Y
Yan Chunwei 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
X
Xin Pan 已提交
6

Y
Yan Chunwei 已提交
7
http://www.apache.org/licenses/LICENSE-2.0
X
Xin Pan 已提交
8

Y
Yan Chunwei 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
X
Xin Pan 已提交
14 15 16 17 18 19 20 21 22

#include <algorithm>
#include <map>
#include <set>
#include <sstream>
#include <string>
#include <utility>
#include <vector>

23
#include "paddle/fluid/framework/feed_fetch_method.h"
L
Luo Tao 已提交
24
#include "paddle/fluid/inference/api/api_impl.h"
D
dzhwinter 已提交
25
#include "paddle/fluid/inference/api/timer.h"
26 27 28
#include "paddle/fluid/platform/profiler.h"

DEFINE_bool(profile, false, "Turn on profiler for fluid");
X
Xin Pan 已提交
29 30 31

namespace paddle {

32 33 34 35
void NativePaddlePredictor::PrepareFeedFetch() {
  for (auto *op : inference_program_->Block(0).AllOps()) {
    if (op->Type() == "feed") {
      int idx = boost::get<int>(op->GetAttr("col"));
L
luotao1 已提交
36
      if (feeds_.size() <= (size_t)idx) {
37 38 39 40 41 42
        feeds_.resize(idx + 1);
      }
      feeds_[idx] = op;
      feed_names_[op->Output("Out")[0]] = idx;
    } else if (op->Type() == "fetch") {
      int idx = boost::get<int>(op->GetAttr("col"));
L
luotao1 已提交
43
      if (fetchs_.size() <= (size_t)idx) {
44 45 46 47 48 49 50
        fetchs_.resize(idx + 1);
      }
      fetchs_[idx] = op;
    }
  }
}

T
tensor-tang 已提交
51 52
bool NativePaddlePredictor::Init(
    std::shared_ptr<framework::Scope> parent_scope) {
X
Xin Pan 已提交
53
  VLOG(3) << "Predictor::init()";
D
dzhwinter 已提交
54
#if !defined(_WIN32)
55 56 57 58 59 60 61 62
  if (FLAGS_profile) {
    LOG(WARNING) << "Profiler is actived, might affect the performance";
    LOG(INFO) << "You can turn off by set gflags '-profile false'";

    auto tracking_device = config_.use_gpu ? platform::ProfilerState::kAll
                                           : platform::ProfilerState::kCPU;
    platform::EnableProfiler(tracking_device);
  }
D
dzhwinter 已提交
63
#endif
D
dzhwinter 已提交
64
  VLOG(3) << "before Place";
Y
Yan Chunwei 已提交
65
  if (config_.use_gpu) {
X
Xin Pan 已提交
66 67 68 69
    place_ = paddle::platform::CUDAPlace(config_.device);
  } else {
    place_ = paddle::platform::CPUPlace();
  }
D
dzhwinter 已提交
70
  VLOG(3) << "before scope";
T
tensor-tang 已提交
71 72 73
  if (parent_scope) {
    scope_ = parent_scope;
    sub_scope_ = &(parent_scope->NewScope());
T
tensor-tang 已提交
74
    PADDLE_ENFORCE_NOT_NULL(sub_scope_, "create sub scope fail");
75
  } else {
D
dzhwinter 已提交
76
    VLOG(3) << "Before InitDevices";
77
    paddle::framework::InitDevices(false);
D
dzhwinter 已提交
78
    VLOG(3) << "after InitDevices";
79 80
    scope_.reset(new paddle::framework::Scope());
  }
D
dzhwinter 已提交
81
  VLOG(3) << "after scope";
X
Xin Pan 已提交
82
  executor_.reset(new paddle::framework::Executor(place_));
D
dzhwinter 已提交
83
  VLOG(3) << "executor";
X
Xin Pan 已提交
84 85 86 87
  // Initialize the inference program
  if (!config_.model_dir.empty()) {
    // Parameters are saved in separate files sited in
    // the specified `dirname`.
D
dzhwinter 已提交
88
    VLOG(3) << config_.model_dir;
89 90
    inference_program_ = paddle::inference::Load(executor_.get(), scope_.get(),
                                                 config_.model_dir);
D
dzhwinter 已提交
91
    VLOG(3) << "load model finish";
X
Xin Pan 已提交
92 93 94 95
  } else if (!config_.prog_file.empty() && !config_.param_file.empty()) {
    // All parameters are saved in a single file.
    // The file names should be consistent with that used
    // in Python API `fluid.io.save_inference_model`.
D
dzhwinter 已提交
96 97 98 99 100
    VLOG(3) << "load program before";
    auto exe = executor_.get();
    VLOG(3) << "executor_";
    auto sc = scope_.get();
    VLOG(3) << "scope_";
X
Xin Pan 已提交
101 102
    inference_program_ = paddle::inference::Load(
        executor_.get(), scope_.get(), config_.prog_file, config_.param_file);
D
dzhwinter 已提交
103
    VLOG(3) << "load program finish";
X
Xin Pan 已提交
104 105 106 107
  } else {
    LOG(ERROR) << "fail to load inference model.";
    return false;
  }
D
dzhwinter 已提交
108 109 110
  VLOG(3) << "pointer" << inference_program_.get();

  VLOG(3) << "prepare before";
X
Xin Pan 已提交
111
  ctx_ = executor_->Prepare(*inference_program_, 0);
D
dzhwinter 已提交
112
  VLOG(3) << "prepare finished";
113 114
  executor_->CreateVariables(*inference_program_,
                             sub_scope_ ? sub_scope_ : scope_.get(), 0);
D
dzhwinter 已提交
115
  VLOG(3) << "create variables";
Y
Yan Chunwei 已提交
116

X
Xin Pan 已提交
117
  // Get the feed_target_names and fetch_target_names
118
  PrepareFeedFetch();
D
dzhwinter 已提交
119
  VLOG(3) << "feed fetch";
X
Xin Pan 已提交
120 121 122
  return true;
}

123
NativePaddlePredictor::~NativePaddlePredictor() {
D
dzhwinter 已提交
124
#if !defined(_WIN32)
125 126 127 128
  if (FLAGS_profile) {
    platform::DisableProfiler(platform::EventSortingKey::kTotal,
                              "./profile.log");
  }
D
dzhwinter 已提交
129
#endif
130 131 132
  if (sub_scope_) {
    scope_->DeleteScope(sub_scope_);
  }
L
Luo Tao 已提交
133
}
134

Y
Yan Chunwei 已提交
135
bool NativePaddlePredictor::Run(const std::vector<PaddleTensor> &inputs,
136 137
                                std::vector<PaddleTensor> *output_data,
                                int batch_size) {
X
Xin Pan 已提交
138
  VLOG(3) << "Predictor::predict";
D
dzhwinter 已提交
139
  using Timer = paddle::inference::Timer;
X
Xin Pan 已提交
140 141 142
  Timer timer;
  timer.tic();
  // set feed variable
143
  std::vector<framework::LoDTensor> feeds;
144 145
  framework::Scope *scope = sub_scope_ != nullptr ? sub_scope_ : scope_.get();
  if (!SetFeed(inputs, scope)) {
X
Xin Pan 已提交
146 147 148 149 150
    LOG(ERROR) << "fail to set feed";
    return false;
  }
  // Run the inference program
  // if share variables, we need not create variables
151
  VLOG(4) << "Run prepared context";
152 153 154
  executor_->RunPreparedContext(ctx_.get(), scope,
                                false, /* don't create local scope each time*/
                                false /* don't create variable eatch time */);
155
  VLOG(4) << "Finish prepared context";
156 157
  // get fetch variable
  if (!GetFetch(output_data, scope)) {
158
    LOG(ERROR) << "fail to get fetches";
X
Xin Pan 已提交
159 160 161 162 163 164
    return false;
  }
  VLOG(3) << "predict cost: " << timer.toc() << "ms";
  return true;
}

Y
Yan Chunwei 已提交
165
std::unique_ptr<PaddlePredictor> NativePaddlePredictor::Clone() {
X
Xin Pan 已提交
166
  VLOG(3) << "Predictor::clone";
Y
Yan Chunwei 已提交
167 168
  std::unique_ptr<PaddlePredictor> cls(new NativePaddlePredictor(config_));

169
  if (!dynamic_cast<NativePaddlePredictor *>(cls.get())->Init(scope_)) {
Y
Yan Chunwei 已提交
170
    LOG(ERROR) << "fail to call Init";
X
Xin Pan 已提交
171 172
    return nullptr;
  }
J
Fix mac  
JiabinYang 已提交
173 174 175 176
#ifdef __clang__
  // fix clang compile error
  return cls;
#else
177 178
  // fix manylinux compile error.
  return std::move(cls);
J
Fix mac  
JiabinYang 已提交
179
#endif
X
Xin Pan 已提交
180 181
}

Y
Yan Chunwei 已提交
182
bool NativePaddlePredictor::SetFeed(const std::vector<PaddleTensor> &inputs,
183
                                    framework::Scope *scope) {
X
Xin Pan 已提交
184
  VLOG(3) << "Predictor::set_feed";
185
  if (inputs.size() != feeds_.size()) {
X
Xin Pan 已提交
186 187 188
    LOG(ERROR) << "wrong feed input size.";
    return false;
  }
189
  for (size_t i = 0; i < inputs.size(); ++i) {
190 191
    framework::LoDTensor input;
    framework::DDim ddim = framework::make_ddim(inputs[i].shape);
X
Xin Pan 已提交
192 193
    void *input_ptr;
    if (inputs[i].dtype == PaddleDType::INT64) {
194
      input_ptr = input.mutable_data<int64_t>(ddim, platform::CPUPlace());
X
Xin Pan 已提交
195
    } else if (inputs[i].dtype == PaddleDType::FLOAT32) {
196
      input_ptr = input.mutable_data<float>(ddim, platform::CPUPlace());
X
Xin Pan 已提交
197 198 199 200 201 202
    } else {
      LOG(ERROR) << "unsupported feed type " << inputs[i].dtype;
      return false;
    }

    // TODO(panyx0718): Init LoDTensor from existing memcpy to save a copy.
203
    std::memcpy(static_cast<void *>(input_ptr), inputs[i].data.data(),
204
                inputs[i].data.length());
Y
Yan Chunwei 已提交
205 206 207 208 209 210
    // TODO(Superjomn) Low performance, need optimization for heavy LoD copy.
    framework::LoD lod;
    for (auto &level : inputs[i].lod) {
      lod.emplace_back(level);
    }
    input.set_lod(lod);
211 212
    int idx = -1;
    if (config_.specify_input_name) {
X
polish  
Xin Pan 已提交
213
      idx = feed_names_[inputs[i].name];
214 215 216 217
    } else {
      idx = boost::get<int>(feeds_[i]->GetAttr("col"));
    }
    framework::SetFeedVariable(scope, input, "feed", idx);
X
Xin Pan 已提交
218 219 220
  }
  return true;
}
L
luotao1 已提交
221 222 223 224 225 226 227 228 229 230 231 232 233
template <typename T>
void NativePaddlePredictor::GetFetchOne(const framework::LoDTensor &fetch,
                                        PaddleTensor *output) {
  std::vector<int> shape;
  auto dims_i = fetch.dims();
  auto lod = fetch.lod();
  const T *output_ptr = fetch.data<T>();
  auto num = fetch.numel();
  std::vector<T> data;
  if (0 == lod.size()) {
    std::copy(output_ptr, output_ptr + num, std::back_inserter(data));
    for (int j = 0; j < dims_i.size(); ++j) {
      shape.push_back(dims_i[j]);
X
Xin Pan 已提交
234
    }
L
luotao1 已提交
235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256
  } else {
    // for batch detection
    // image[0] -> output[0] shape {145, 6}
    // image[1] -> output[1] shape {176, 6}
    // then,
    // the batch output shape {321, 6}
    // the lod {{0, 145, 321}}
    // so we should append output[0] to {176, 6}
    size_t max_dim = 0;
    for (size_t j = 1; j < lod[0].size(); j++) {
      max_dim = std::max(max_dim, lod[0][j] - lod[0][j - 1]);
    }
    size_t common_dim = lod[0].back() == 0 ? 0 : num / lod[0].back();
    if (max_dim > 0) {
      data.resize((lod[0].size() - 1) * max_dim * common_dim, 0);
    }
    for (size_t j = 1; j < lod[0].size(); j++) {
      size_t start = lod[0][j - 1] * common_dim;
      size_t end = lod[0][j] * common_dim;
      if (end > start) {
        std::copy(output_ptr + start, output_ptr + end,
                  data.begin() + (j - 1) * max_dim * common_dim);
X
Xin Pan 已提交
257 258
      }
    }
L
luotao1 已提交
259 260 261 262
    shape.push_back(lod[0].size() - 1);
    shape.push_back(max_dim);
    for (int j = 1; j < dims_i.size(); ++j) {
      shape.push_back(dims_i[j]);
263
    }
L
luotao1 已提交
264 265 266 267 268 269 270 271 272 273 274 275 276
  }

  output->shape = shape;
  auto &buffer = output->data;
  if (buffer.empty() || buffer.length() < sizeof(T) * data.size()) {
    buffer.Resize(sizeof(T) * data.size());
  }
  std::memcpy(buffer.data(), data.data(), buffer.length());
  // copy LoD
  for (const auto &level : fetch.lod()) {
    output->lod.emplace_back(level);
  }
}
X
Xin Pan 已提交
277

278 279
bool NativePaddlePredictor::GetFetch(std::vector<PaddleTensor> *outputs,
                                     framework::Scope *scope) {
X
Xin Pan 已提交
280
  VLOG(3) << "Predictor::get_fetch";
281 282 283
  outputs->resize(fetchs_.size());
  for (size_t i = 0; i < fetchs_.size(); ++i) {
    int idx = boost::get<int>(fetchs_[i]->GetAttr("col"));
L
luotao1 已提交
284 285
    PADDLE_ENFORCE((size_t)idx == i);
    framework::LoDTensor &fetch =
286
        framework::GetFetchVariable(*scope, "fetch", idx);
L
luotao1 已提交
287 288 289 290 291 292 293 294
    auto type = fetch.type();
    auto output = &(outputs->at(i));
    if (type == typeid(float)) {
      GetFetchOne<float>(fetch, output);
      output->dtype = PaddleDType::FLOAT32;
    } else if (type == typeid(int64_t)) {
      GetFetchOne<int64_t>(fetch, output);
      output->dtype = PaddleDType::INT64;
X
Xin Pan 已提交
295
    } else {
L
luotao1 已提交
296
      LOG(ERROR) << "unknown type, only support float32 and int64 now.";
Y
Yan Chunwei 已提交
297
    }
X
Xin Pan 已提交
298 299 300 301
  }
  return true;
}

302
template <>
303 304
std::unique_ptr<PaddlePredictor> CreatePaddlePredictor<
    NativeConfig, PaddleEngineKind::kNative>(const NativeConfig &config) {
Y
Yan Chunwei 已提交
305 306 307
  VLOG(3) << "create NativePaddlePredictor";
  if (config.use_gpu) {
    // 1. GPU memeroy
D
dzhwinter 已提交
308 309 310 311 312
    VLOG(3) << "before check";
   // PADDLE_ENFORCE_GT(
    //    config.fraction_of_gpu_memory, 0.f,
    //    "fraction_of_gpu_memory in the config should be set to range (0., 1.]");
    VLOG(3) << "failed on first";
313
    PADDLE_ENFORCE_GE(config.device, 0, "Invalid device id %d", config.device);
D
dzhwinter 已提交
314
    VLOG(3) << "after flags";
Y
Yan Chunwei 已提交
315 316 317 318 319
    std::vector<std::string> flags;
    if (config.fraction_of_gpu_memory >= 0.0f ||
        config.fraction_of_gpu_memory <= 0.95f) {
      flags.push_back("dummpy");
      std::string flag = "--fraction_of_gpu_memory_to_use=" +
D
dzhwinter 已提交
320
                         std::to_string(config.fraction_of_gpu_memory);
Y
Yan Chunwei 已提交
321 322 323
      flags.push_back(flag);
      VLOG(3) << "set flag: " << flag;
      framework::InitGflags(flags);
D
dzhwinter 已提交
324
      VLOG(3) << "flags setting";
Y
Yan Chunwei 已提交
325
    }
X
Xin Pan 已提交
326
  }
D
dzhwinter 已提交
327
  VLOG(3) << "Init flags Done";
Y
Yan Chunwei 已提交
328
  std::unique_ptr<PaddlePredictor> predictor(new NativePaddlePredictor(config));
T
tensor-tang 已提交
329
  if (!dynamic_cast<NativePaddlePredictor *>(predictor.get())->Init(nullptr)) {
X
Xin Pan 已提交
330 331
    return nullptr;
  }
J
Fix mac  
JiabinYang 已提交
332
#ifdef __clang__
J
Jiabin Yang 已提交
333
  // fix clang compile error
J
Fix mac  
JiabinYang 已提交
334 335
  return predictor;
#else
336
  return std::move(predictor);
J
Fix mac  
JiabinYang 已提交
337
#endif
X
Xin Pan 已提交
338 339 340
}

}  // namespace paddle