utils.cc 10.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/eager/utils.h"
16
#include "paddle/fluid/eager/api/utils/global_utils.h"
17
#include "paddle/fluid/eager/api/utils/hook_utils.h"
18
#include "paddle/fluid/eager/tensor_wrapper.h"
19 20 21 22 23 24 25 26

#include "paddle/pten/api/all.h"
#include "paddle/pten/common/layout.h"
#include "paddle/pten/core/tensor_meta.h"

#include "paddle/fluid/framework/data_layout.h"
#include "paddle/fluid/framework/pten_utils.h"
#include "paddle/fluid/framework/variable.h"
27

28 29 30
PADDLE_DEFINE_EXPORTED_bool(retain_grad_for_all_tensor, true,
                            "retain grad for all tensor");

31
namespace egr {
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54
/**
 * Implementation of Eager Utils.
**/

AutogradMeta* EagerUtils::autograd_meta(egr::EagerTensor* target) {
  auto* p_autograd_meta = target->get_autograd_meta();
  if (!p_autograd_meta) {
    auto p_autograd_meta_ptr = std::make_shared<AutogradMeta>();
    p_autograd_meta = p_autograd_meta_ptr.get();
    target->set_autograd_meta(p_autograd_meta_ptr);
  }
  return static_cast<AutogradMeta*>(p_autograd_meta);
}

AutogradMeta* EagerUtils::unsafe_autograd_meta(const egr::EagerTensor& target) {
  auto* p_autograd_meta = target.get_autograd_meta();
  PADDLE_ENFORCE(p_autograd_meta,
                 paddle::platform::errors::Fatal(
                     "Null autograd_meta gotten from unsafe_autograd_meta()"));
  return static_cast<AutogradMeta*>(p_autograd_meta);
}

std::vector<AutogradMeta*> EagerUtils::unsafe_autograd_meta(
55
    const std::vector<egr::EagerTensor>& targets) {
56
  std::vector<AutogradMeta*> metas;
57
  metas.reserve(targets.size());
58
  for (const egr::EagerTensor& t : targets) {
59
    metas.emplace_back(unsafe_autograd_meta(t));
60 61 62 63
  }
  return metas;
}

64 65 66 67 68 69 70 71
AutogradMeta* EagerUtils::nullable_autograd_meta(
    const egr::EagerTensor& target) {
  auto* p_autograd_meta = target.get_autograd_meta();
  if (!p_autograd_meta) return nullptr;

  return static_cast<AutogradMeta*>(p_autograd_meta);
}

72 73 74 75 76 77 78 79 80 81
std::vector<AutogradMeta*> EagerUtils::nullable_autograd_meta(
    const std::vector<egr::EagerTensor>& targets) {
  std::vector<AutogradMeta*> metas;
  metas.reserve(targets.size());
  for (const egr::EagerTensor& t : targets) {
    metas.emplace_back(nullable_autograd_meta(t));
  }
  return metas;
}

82
std::vector<AutogradMeta*> EagerUtils::autograd_meta(
83 84 85 86
    std::vector<egr::EagerTensor>* targets) {
  std::vector<AutogradMeta*> ret;
  ret.reserve(targets->size());

87
  // for autograd_meta we can tolerent it has nullptr.
88 89 90 91 92 93 94 95 96 97 98 99 100 101
  for (auto& t : (*targets)) {
    auto* p_autograd_meta = autograd_meta(&t);
    ret.push_back(static_cast<AutogradMeta*>(p_autograd_meta));
  }
  return ret;
}

std::pair<size_t, size_t> EagerUtils::OutRankInfo(
    const egr::EagerTensor& target) {
  return unsafe_autograd_meta(target)->OutRankInfo();
}

std::shared_ptr<GradNodeBase> EagerUtils::grad_node(
    const egr::EagerTensor& target) {
102 103 104 105 106 107
  auto* meta = nullable_autograd_meta(target);
  if (meta) {
    return meta->GetMutableGradNode();
  } else {
    return nullptr;
  }
108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
}

void EagerUtils::SetHistory(std::vector<AutogradMeta*>* autograd_metas,
                            const std::shared_ptr<GradNodeBase>& grad_node) {
  for (const auto& autograd_meta : *autograd_metas) {
    autograd_meta->SetGradNode(grad_node);
  }
}

void EagerUtils::SetHistory(AutogradMeta* autograd_meta,
                            const std::shared_ptr<GradNodeBase>& grad_node) {
  autograd_meta->SetGradNode(grad_node);
}

void EagerUtils::SetOutRankWithSlot(std::vector<AutogradMeta*>* targets,
                                    size_t slot_id) {
  // Set OutRankInfo from 0 to size of targets
  for (size_t i = 0; i < targets->size(); i++) {
    (*targets)[i]->SetSingleOutRankWithSlot(slot_id, i);
  }
}
void EagerUtils::SetOutRankWithSlot(AutogradMeta* target, size_t slot_id) {
  target->SetSingleOutRankWithSlot(slot_id, 0);
}

133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157
/* ---- Tensor -> Var ---- */
std::vector<std::shared_ptr<egr::EagerTensor>> EagerUtils::SyncToVars(
    const egr::EagerTensor& tensor) {
  // TODO(jiabin): No const cast here. We should call SyncToVar in Python_C
  // wrapper
  const_cast<EagerTensor*>(&tensor)->SyncToVar(
      paddle::framework::proto::VarType_Type_LOD_TENSOR);
  return {std::make_shared<EagerTensor>(tensor)};
}

std::vector<std::shared_ptr<egr::EagerTensor>> EagerUtils::SyncToVars(
    const std::vector<egr::EagerTensor>& tensors) {
  // TODO(jiabin): No const cast here. We should call SyncToVar in Python_C
  // wrapper
  std::vector<std::shared_ptr<EagerTensor>> res;
  size_t num = tensors.size();
  res.reserve(num);
  for (size_t i = 0; i < num; i++) {
    const_cast<EagerTensor*>(&(tensors[i]))
        ->SyncToVar(paddle::framework::proto::VarType_Type_LOD_TENSOR);
    res.emplace_back(new EagerTensor(tensors[i]));
  }
  return res;
}

158 159 160 161 162
static std::shared_ptr<egr::EagerTensor> TrySyncToVar(
    egr::EagerTensor* tensor) {
  if (tensor->initialized() || tensor->Var().IsInitialized()) {
    tensor->SyncToVar(paddle::framework::proto::VarType_Type_LOD_TENSOR);
  }
163 164
  return std::shared_ptr<egr::EagerTensor>(tensor,
                                           [&](egr::EagerTensor* ptr) {});
165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182
}

std::vector<std::shared_ptr<egr::EagerTensor>> EagerUtils::TrySyncToVars(
    egr::EagerTensor* tensor) {
  return {TrySyncToVar(tensor)};
}

std::vector<std::shared_ptr<egr::EagerTensor>> EagerUtils::TrySyncToVars(
    std::vector<egr::EagerTensor>* tensors) {
  std::vector<std::shared_ptr<EagerTensor>> res;
  size_t num = tensors->size();
  res.reserve(num);
  for (size_t i = 0; i < num; i++) {
    res.emplace_back(TrySyncToVar(&(*tensors)[i]));
  }
  return res;
}

183 184 185 186 187 188 189 190 191 192 193
std::vector<std::shared_ptr<egr::EagerTensor>> EagerUtils::TrySyncToVars(
    const std::vector<egr::EagerTensor*>& tensors) {
  std::vector<std::shared_ptr<EagerTensor>> res;
  size_t num = tensors.size();
  res.reserve(num);
  for (size_t i = 0; i < num; i++) {
    res.emplace_back(TrySyncToVar(tensors[i]));
  }
  return res;
}

194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255
/* ---- VarBase -> Tensor ---- */
std::vector<std::shared_ptr<egr::EagerTensor>> EagerUtils::SyncToTensors(
    const egr::EagerTensor& tensor) {
  // TODO(jiabin): No const cast here. We should call SyncToTensor in Python_C
  // wrapper
  const_cast<EagerTensor*>(&tensor)->SyncToTensor();
  return {std::make_shared<EagerTensor>(tensor)};
}

std::vector<std::shared_ptr<egr::EagerTensor>> EagerUtils::SyncToTensors(
    const std::vector<egr::EagerTensor>& tensors) {
  // TODO(jiabin): No const cast here. We should call SyncToTensor in Python_C
  // wrapper
  std::vector<std::shared_ptr<EagerTensor>> res;
  size_t num = tensors.size();
  res.reserve(num);
  for (size_t i = 0; i < num; i++) {
    const_cast<EagerTensor*>(&(tensors[i]))->SyncToTensor();
    res.emplace_back(new EagerTensor(tensors[i]));
  }
  return res;
}

std::vector<std::shared_ptr<EagerTensor>> EagerUtils::ConstructDuplicableOutput(
    const size_t num) {
  std::vector<std::shared_ptr<EagerTensor>> res;
  res.reserve(num);
  for (size_t i = 0; i < num; i++) {
    res.emplace_back(
        new EagerTensor(egr::Controller::Instance().GenerateUniqueName()));
  }
  return res;
}

std::vector<egr::EagerTensor> EagerUtils::GetOutputs(
    const std::vector<std::shared_ptr<EagerTensor>>& outs) {
  std::vector<egr::EagerTensor> res;
  res.reserve(outs.size());
  for (const auto& out : outs) {
    PADDLE_ENFORCE_NOT_NULL(
        out.get(), paddle::platform::errors::Fatal(
                       "Eager Tensor %s is null and cannot be copied. "
                       "We are tring to Get Output tensor from its "
                       "shared_ptr, this error may indicate some outputs "
                       "are nullptr",
                       out->name()));
    res.emplace_back((*(out.get())));
  }
  return res;
}

egr::EagerTensor EagerUtils::GetOutput(
    const std::shared_ptr<EagerTensor>& out) {
  PADDLE_ENFORCE_NOT_NULL(
      out.get(), paddle::platform::errors::Fatal(
                     "Eager Tensor %s is null and cannot be copied. We "
                     "are tring to Get Output tensor from its shared_ptr, "
                     "this error may indicate output is nullptr",
                     out->name()));
  return EagerTensor((*(out.get())));
}

256 257 258 259 260 261 262 263 264 265 266 267 268 269 270
EagerTensor EagerUtils::RecoverTensorWrapper(
    TensorWrapper* tw, const std::shared_ptr<GradNodeBase>& grad_node) {
  return tw->recover(grad_node);
}

std::vector<EagerTensor> EagerUtils::RecoverTensorWrapper(
    std::vector<TensorWrapper>* tw,
    const std::shared_ptr<GradNodeBase>& grad_node) {
  std::vector<EagerTensor> ret;
  for (auto& t : *tw) {
    ret.emplace_back(t.recover(grad_node));
  }
  return ret;
}

271 272 273
void EagerUtils::CheckAndRetainGrad(const egr::EagerTensor& tensor) {
  VLOG(6) << "Check RetainGradForTensor: " << tensor.name();
  if (FLAGS_retain_grad_for_all_tensor) {
274
    VLOG(6) << "RetainGradForTensor: " << tensor.name();
275 276 277 278 279 280 281 282
    egr::egr_utils_api::RetainGradForTensor(tensor);
  }
}

void EagerUtils::CheckAndRetainGrad(
    const std::vector<egr::EagerTensor>& tensors) {
  if (FLAGS_retain_grad_for_all_tensor) {
    for (auto& tensor : tensors) {
283
      VLOG(6) << "RetainGradForTensor: " << tensor.name();
284 285 286 287 288
      egr::egr_utils_api::RetainGradForTensor(tensor);
    }
  }
}

289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327
paddle::experimental::Tensor EagerUtils::SyncToPtenTensors(
    const egr::EagerTensor& tensor) {
  const_cast<EagerTensor*>(&tensor)->SyncToTensor();
  return *tensor.Tensor().get();
}

std::vector<paddle::experimental::Tensor> EagerUtils::SyncToPtenTensors(
    const std::vector<egr::EagerTensor>& tensors) {
  std::vector<paddle::experimental::Tensor> res;
  size_t num = tensors.size();
  res.reserve(num);
  for (size_t i = 0; i < num; i++) {
    const_cast<EagerTensor*>(&(tensors[i]))->SyncToTensor();
    res.push_back(*tensors[i].Tensor().get());
  }
  return res;
}

egr::EagerTensor EagerUtils::CreateEagerTensorFromTensor(
    const paddle::experimental::Tensor& tensor) {
  egr::EagerTensor ret;
  ret.set_tensor(std::make_shared<paddle::experimental::Tensor>(tensor));
  return ret;
}

std::vector<egr::EagerTensor> EagerUtils::CreateEagerTensorFromTensor(
    const std::vector<paddle::experimental::Tensor>& tensors) {
  std::vector<egr::EagerTensor> res;
  size_t num = tensors.size();
  res.reserve(num);
  for (size_t i = 0; i < num; i++) {
    egr::EagerTensor tmp;
    tmp.set_tensor(std::make_shared<paddle::experimental::Tensor>(tensors[i]));
    res.emplace_back(std::move(tmp));
  }

  return res;
}

328
}  // namespace egr