utils.cc 7.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/eager/utils.h"
16
#include "paddle/fluid/eager/api/utils/global_utils.h"
17
#include "paddle/fluid/eager/tensor_wrapper.h"
18 19 20 21 22 23 24 25

#include "paddle/pten/api/all.h"
#include "paddle/pten/common/layout.h"
#include "paddle/pten/core/tensor_meta.h"

#include "paddle/fluid/framework/data_layout.h"
#include "paddle/fluid/framework/pten_utils.h"
#include "paddle/fluid/framework/variable.h"
26 27

namespace egr {
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104
/**
 * Implementation of Eager Utils.
**/

AutogradMeta* EagerUtils::autograd_meta(egr::EagerTensor* target) {
  auto* p_autograd_meta = target->get_autograd_meta();
  if (!p_autograd_meta) {
    auto p_autograd_meta_ptr = std::make_shared<AutogradMeta>();
    p_autograd_meta = p_autograd_meta_ptr.get();
    target->set_autograd_meta(p_autograd_meta_ptr);
  }
  return static_cast<AutogradMeta*>(p_autograd_meta);
}

AutogradMeta* EagerUtils::unsafe_autograd_meta(const egr::EagerTensor& target) {
  auto* p_autograd_meta = target.get_autograd_meta();
  PADDLE_ENFORCE(p_autograd_meta,
                 paddle::platform::errors::Fatal(
                     "Null autograd_meta gotten from unsafe_autograd_meta()"));
  return static_cast<AutogradMeta*>(p_autograd_meta);
}

std::vector<AutogradMeta*> EagerUtils::unsafe_autograd_meta(
    std::vector<egr::EagerTensor>* targets) {
  std::vector<AutogradMeta*> metas;
  for (const egr::EagerTensor& t : *targets) {
    metas.push_back(unsafe_autograd_meta(t));
  }
  return metas;
}

std::vector<AutogradMeta*> EagerUtils::multi_autograd_meta(
    std::vector<egr::EagerTensor>* targets) {
  std::vector<AutogradMeta*> ret;
  ret.reserve(targets->size());

  // for multi_autograd_meta we can tolerent it has nullptr.
  for (auto& t : (*targets)) {
    auto* p_autograd_meta = autograd_meta(&t);
    ret.push_back(static_cast<AutogradMeta*>(p_autograd_meta));
  }
  return ret;
}

std::pair<size_t, size_t> EagerUtils::OutRankInfo(
    const egr::EagerTensor& target) {
  return unsafe_autograd_meta(target)->OutRankInfo();
}

std::shared_ptr<GradNodeBase> EagerUtils::grad_node(
    const egr::EagerTensor& target) {
  return unsafe_autograd_meta(target)->GetMutableGradNode();
}

void EagerUtils::SetHistory(std::vector<AutogradMeta*>* autograd_metas,
                            const std::shared_ptr<GradNodeBase>& grad_node) {
  for (const auto& autograd_meta : *autograd_metas) {
    autograd_meta->SetGradNode(grad_node);
  }
}

void EagerUtils::SetHistory(AutogradMeta* autograd_meta,
                            const std::shared_ptr<GradNodeBase>& grad_node) {
  autograd_meta->SetGradNode(grad_node);
}

void EagerUtils::SetOutRankWithSlot(std::vector<AutogradMeta*>* targets,
                                    size_t slot_id) {
  // Set OutRankInfo from 0 to size of targets
  for (size_t i = 0; i < targets->size(); i++) {
    (*targets)[i]->SetSingleOutRankWithSlot(slot_id, i);
  }
}
void EagerUtils::SetOutRankWithSlot(AutogradMeta* target, size_t slot_id) {
  target->SetSingleOutRankWithSlot(slot_id, 0);
}

105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191
/* ---- Tensor -> Var ---- */
std::vector<std::shared_ptr<egr::EagerTensor>> EagerUtils::SyncToVars(
    const egr::EagerTensor& tensor) {
  // TODO(jiabin): No const cast here. We should call SyncToVar in Python_C
  // wrapper
  const_cast<EagerTensor*>(&tensor)->SyncToVar(
      paddle::framework::proto::VarType_Type_LOD_TENSOR);
  return {std::make_shared<EagerTensor>(tensor)};
}

std::vector<std::shared_ptr<egr::EagerTensor>> EagerUtils::SyncToVars(
    const std::vector<egr::EagerTensor>& tensors) {
  // TODO(jiabin): No const cast here. We should call SyncToVar in Python_C
  // wrapper
  std::vector<std::shared_ptr<EagerTensor>> res;
  size_t num = tensors.size();
  res.reserve(num);
  for (size_t i = 0; i < num; i++) {
    const_cast<EagerTensor*>(&(tensors[i]))
        ->SyncToVar(paddle::framework::proto::VarType_Type_LOD_TENSOR);
    res.emplace_back(new EagerTensor(tensors[i]));
  }
  return res;
}

/* ---- VarBase -> Tensor ---- */
std::vector<std::shared_ptr<egr::EagerTensor>> EagerUtils::SyncToTensors(
    const egr::EagerTensor& tensor) {
  // TODO(jiabin): No const cast here. We should call SyncToTensor in Python_C
  // wrapper
  const_cast<EagerTensor*>(&tensor)->SyncToTensor();
  return {std::make_shared<EagerTensor>(tensor)};
}

std::vector<std::shared_ptr<egr::EagerTensor>> EagerUtils::SyncToTensors(
    const std::vector<egr::EagerTensor>& tensors) {
  // TODO(jiabin): No const cast here. We should call SyncToTensor in Python_C
  // wrapper
  std::vector<std::shared_ptr<EagerTensor>> res;
  size_t num = tensors.size();
  res.reserve(num);
  for (size_t i = 0; i < num; i++) {
    const_cast<EagerTensor*>(&(tensors[i]))->SyncToTensor();
    res.emplace_back(new EagerTensor(tensors[i]));
  }
  return res;
}

std::vector<std::shared_ptr<EagerTensor>> EagerUtils::ConstructDuplicableOutput(
    const size_t num) {
  std::vector<std::shared_ptr<EagerTensor>> res;
  res.reserve(num);
  for (size_t i = 0; i < num; i++) {
    res.emplace_back(
        new EagerTensor(egr::Controller::Instance().GenerateUniqueName()));
  }
  return res;
}

std::vector<egr::EagerTensor> EagerUtils::GetOutputs(
    const std::vector<std::shared_ptr<EagerTensor>>& outs) {
  std::vector<egr::EagerTensor> res;
  res.reserve(outs.size());
  for (const auto& out : outs) {
    PADDLE_ENFORCE_NOT_NULL(
        out.get(), paddle::platform::errors::Fatal(
                       "Eager Tensor %s is null and cannot be copied. "
                       "We are tring to Get Output tensor from its "
                       "shared_ptr, this error may indicate some outputs "
                       "are nullptr",
                       out->name()));
    res.emplace_back((*(out.get())));
  }
  return res;
}

egr::EagerTensor EagerUtils::GetOutput(
    const std::shared_ptr<EagerTensor>& out) {
  PADDLE_ENFORCE_NOT_NULL(
      out.get(), paddle::platform::errors::Fatal(
                     "Eager Tensor %s is null and cannot be copied. We "
                     "are tring to Get Output tensor from its shared_ptr, "
                     "this error may indicate output is nullptr",
                     out->name()));
  return EagerTensor((*(out.get())));
}

192 193 194 195 196 197 198 199 200 201 202 203 204 205 206
EagerTensor EagerUtils::RecoverTensorWrapper(
    TensorWrapper* tw, const std::shared_ptr<GradNodeBase>& grad_node) {
  return tw->recover(grad_node);
}

std::vector<EagerTensor> EagerUtils::RecoverTensorWrapper(
    std::vector<TensorWrapper>* tw,
    const std::shared_ptr<GradNodeBase>& grad_node) {
  std::vector<EagerTensor> ret;
  for (auto& t : *tw) {
    ret.emplace_back(t.recover(grad_node));
  }
  return ret;
}

207
}  // namespace egr