test_pool_max_op.py 6.2 KB
Newer Older
D
dzhwinter 已提交
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

C
chengduoZH 已提交
15 16 17 18 19
import unittest
import numpy as np
from op_test import OpTest


C
chengduoZH 已提交
20
def max_pool3D_forward_naive(x, ksize, strides, paddings, global_pool=False):
C
chengduoZH 已提交
21 22

    N, C, D, H, W = x.shape
C
chengduoZH 已提交
23
    if global_pool:
C
chengduoZH 已提交
24
        ksize = [D, H, W]
C
chengduoZH 已提交
25 26
        paddings = [0, 0, 0]

C
chengduoZH 已提交
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43
    D_out = (D - ksize[0] + 2 * paddings[0]) / strides[0] + 1
    H_out = (H - ksize[1] + 2 * paddings[1]) / strides[1] + 1
    W_out = (W - ksize[2] + 2 * paddings[2]) / strides[2] + 1
    out = np.zeros((N, C, D_out, H_out, W_out))
    mask = np.zeros((N, C, D_out, H_out, W_out))
    for k in xrange(D_out):
        d_start = np.max((k * strides[0] - paddings[0], 0))
        d_end = np.min((k * strides[0] + ksize[0] - paddings[0], D))
        for i in xrange(H_out):
            h_start = np.max((i * strides[0] - paddings[0], 0))
            h_end = np.min((i * strides[0] + ksize[0] - paddings[0], H))
            for j in xrange(W_out):
                w_start = np.max((j * strides[1] - paddings[1], 0))
                w_end = np.min((j * strides[1] + ksize[1] - paddings[1], W))
                x_masked = x[:, :, d_start:d_end, h_start:h_end, w_start:w_end]

                out[:, :, k, i, j] = np.max(x_masked, axis=(2, 3, 4))
C
chengduoZH 已提交
44 45 46 47 48 49 50 51 52 53 54 55 56

                for n in xrange(N):
                    for c in xrange(C):
                        arr = x_masked[n, c, :, :, :]
                        index = np.where(arr == np.max(arr))
                        sub_deep = index[0][0]
                        sub_row = index[1][0]
                        sub_col = index[2][0]
                        index = ((d_start + sub_deep) * H +
                                 (h_start + sub_row)) * W + w_start + sub_col
                        mask[n, c, k, i, j] = index

    return out, mask
C
chengduoZH 已提交
57 58


C
chengduoZH 已提交
59
def max_pool2D_forward_naive(x, ksize, strides, paddings, global_pool=False):
C
chengduoZH 已提交
60 61

    N, C, H, W = x.shape
C
chengduoZH 已提交
62
    if global_pool:
C
chengduoZH 已提交
63
        ksize = [H, W]
C
chengduoZH 已提交
64 65
        paddings = [0, 0]

C
chengduoZH 已提交
66 67 68 69 70 71 72 73 74 75 76 77 78 79
    H_out = (H - ksize[0] + 2 * paddings[0]) / strides[0] + 1
    W_out = (W - ksize[1] + 2 * paddings[1]) / strides[1] + 1
    out = np.zeros((N, C, H_out, W_out))
    mask = np.zeros((N, C, H_out, W_out))
    for i in xrange(H_out):
        for j in xrange(W_out):
            r_start = np.max((i * strides[0] - paddings[0], 0))
            r_end = np.min((i * strides[0] + ksize[0] - paddings[0], H))
            c_start = np.max((j * strides[1] - paddings[1], 0))
            c_end = np.min((j * strides[1] + ksize[1] - paddings[1], W))
            x_masked = x[:, :, r_start:r_end, c_start:c_end]

            out[:, :, i, j] = np.max(x_masked, axis=(2, 3))

C
chengduoZH 已提交
80 81 82 83 84 85 86 87 88 89
            for n in xrange(N):
                for c in xrange(C):
                    arr = x_masked[n, c, :, :]
                    index = np.where(arr == np.max(arr))
                    sub_row = index[0][0]
                    sub_col = index[1][0]
                    index = (r_start + sub_row) * W + c_start + sub_col
                    mask[n, c, i, j] = index

    return out, mask
C
chengduoZH 已提交
90 91 92 93


class TestMaxPoolWithIndex_Op(OpTest):
    def setUp(self):
C
fix bug  
chengduoZH 已提交
94
        self.init_test_case()
C
chengduoZH 已提交
95 96
        self.init_global()

C
chengduoZH 已提交
97
        input = np.random.random(self.shape).astype("float32")
C
chengduoZH 已提交
98 99
        output, mask = self.pool_forward_naive(input, self.ksize, self.strides,
                                               self.paddings, self.global_pool)
C
fix bug  
chengduoZH 已提交
100
        output = output.astype("float32")
C
chengduoZH 已提交
101
        mask = mask.astype("int32")
C
chengduoZH 已提交
102 103 104 105 106

        self.attrs = {
            'strides': self.strides,
            'paddings': self.paddings,
            'ksize': self.ksize,
C
chengduoZH 已提交
107
            'global_pooling': self.global_pool,
C
chengduoZH 已提交
108 109 110
        }

        self.inputs = {'X': input}
C
chengduoZH 已提交
111
        self.outputs = {'Out': output, "Mask": mask}
C
chengduoZH 已提交
112 113 114 115 116 117 118

    def test_check_output(self):
        self.check_output()

    # def test_check_grad(self):
    #     self.check_grad(set(['X']), ['Out'], max_relative_error=0.07)

C
fix bug  
chengduoZH 已提交
119
    def init_test_case(self):
C
chengduoZH 已提交
120
        self.op_type = "max_pool3d_with_index"
C
chengduoZH 已提交
121 122 123 124 125 126
        self.pool_forward_naive = max_pool3D_forward_naive
        self.shape = [2, 3, 5, 5, 5]
        self.ksize = [3, 3, 3]
        self.strides = [1, 1, 1]
        self.paddings = [1, 1, 1]

C
chengduoZH 已提交
127 128 129
    def init_global(self):
        self.global_pool = False

C
chengduoZH 已提交
130 131

class TestCase1(TestMaxPoolWithIndex_Op):
C
chengduoZH 已提交
132
    def init_global(self):
C
chengduoZH 已提交
133 134 135 136
        self.global_pool = True


class TestCase2(TestMaxPoolWithIndex_Op):
C
fix bug  
chengduoZH 已提交
137
    def init_test_case(self):
C
chengduoZH 已提交
138
        self.op_type = "max_pool3d_with_index"
C
chengduoZH 已提交
139 140 141 142 143 144
        self.pool_forward_naive = max_pool3D_forward_naive
        self.shape = [2, 3, 7, 7, 7]
        self.ksize = [3, 3, 3]
        self.strides = [2, 2, 2]
        self.paddings = [0, 0, 0]

C
chengduoZH 已提交
145
    def init_global(self):
C
chengduoZH 已提交
146
        self.global_pool = True
C
chengduoZH 已提交
147 148


C
chengduoZH 已提交
149 150 151
class TestCase3(TestCase2):
    def init_global(self):
        self.global_pool = False
C
chengduoZH 已提交
152 153


C
chengduoZH 已提交
154 155
#----------------max_pool2d_with_index----------------
class TestCase4(TestMaxPoolWithIndex_Op):
C
fix bug  
chengduoZH 已提交
156
    def init_test_case(self):
C
chengduoZH 已提交
157
        self.op_type = "max_pool2d_with_index"
C
chengduoZH 已提交
158 159 160 161 162 163
        self.pool_forward_naive = max_pool2D_forward_naive
        self.shape = [2, 3, 7, 7]
        self.ksize = [3, 3]
        self.strides = [1, 1]
        self.paddings = [1, 1]

C
chengduoZH 已提交
164 165
    def init_global(self):
        self.global_pool = True
C
chengduoZH 已提交
166

C
chengduoZH 已提交
167

C
chengduoZH 已提交
168
class TestCase5(TestCase4):
C
chengduoZH 已提交
169
    def init_global(self):
C
chengduoZH 已提交
170
        self.global_pool = False
C
chengduoZH 已提交
171 172 173 174


class TestCase6(TestMaxPoolWithIndex_Op):
    def init_test_case(self):
C
chengduoZH 已提交
175
        self.op_type = "max_pool2d_with_index"
C
chengduoZH 已提交
176 177 178 179 180 181
        self.pool_forward_naive = max_pool2D_forward_naive
        self.shape = [2, 3, 7, 7]
        self.ksize = [3, 3]
        self.strides = [2, 2]
        self.paddings = [0, 0]

C
chengduoZH 已提交
182
    def init_global(self):
C
chengduoZH 已提交
183
        self.global_pool = True
C
chengduoZH 已提交
184 185


C
chengduoZH 已提交
186 187 188
class TestCase7(TestCase6):
    def init_global(self):
        self.global_pool = False
C
chengduoZH 已提交
189 190 191 192


if __name__ == '__main__':
    unittest.main()