test_pool_max_op.py 6.2 KB
Newer Older
D
dzhwinter 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
#  Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.
C
chengduoZH 已提交
14 15 16 17 18
import unittest
import numpy as np
from op_test import OpTest


C
chengduoZH 已提交
19
def max_pool3D_forward_naive(x, ksize, strides, paddings, global_pool=False):
C
chengduoZH 已提交
20 21

    N, C, D, H, W = x.shape
C
chengduoZH 已提交
22
    if global_pool:
C
chengduoZH 已提交
23
        ksize = [D, H, W]
C
chengduoZH 已提交
24 25
        paddings = [0, 0, 0]

C
chengduoZH 已提交
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42
    D_out = (D - ksize[0] + 2 * paddings[0]) / strides[0] + 1
    H_out = (H - ksize[1] + 2 * paddings[1]) / strides[1] + 1
    W_out = (W - ksize[2] + 2 * paddings[2]) / strides[2] + 1
    out = np.zeros((N, C, D_out, H_out, W_out))
    mask = np.zeros((N, C, D_out, H_out, W_out))
    for k in xrange(D_out):
        d_start = np.max((k * strides[0] - paddings[0], 0))
        d_end = np.min((k * strides[0] + ksize[0] - paddings[0], D))
        for i in xrange(H_out):
            h_start = np.max((i * strides[0] - paddings[0], 0))
            h_end = np.min((i * strides[0] + ksize[0] - paddings[0], H))
            for j in xrange(W_out):
                w_start = np.max((j * strides[1] - paddings[1], 0))
                w_end = np.min((j * strides[1] + ksize[1] - paddings[1], W))
                x_masked = x[:, :, d_start:d_end, h_start:h_end, w_start:w_end]

                out[:, :, k, i, j] = np.max(x_masked, axis=(2, 3, 4))
C
chengduoZH 已提交
43 44 45 46 47 48 49 50 51 52 53 54 55

                for n in xrange(N):
                    for c in xrange(C):
                        arr = x_masked[n, c, :, :, :]
                        index = np.where(arr == np.max(arr))
                        sub_deep = index[0][0]
                        sub_row = index[1][0]
                        sub_col = index[2][0]
                        index = ((d_start + sub_deep) * H +
                                 (h_start + sub_row)) * W + w_start + sub_col
                        mask[n, c, k, i, j] = index

    return out, mask
C
chengduoZH 已提交
56 57


C
chengduoZH 已提交
58
def max_pool2D_forward_naive(x, ksize, strides, paddings, global_pool=False):
C
chengduoZH 已提交
59 60

    N, C, H, W = x.shape
C
chengduoZH 已提交
61
    if global_pool:
C
chengduoZH 已提交
62
        ksize = [H, W]
C
chengduoZH 已提交
63 64
        paddings = [0, 0]

C
chengduoZH 已提交
65 66 67 68 69 70 71 72 73 74 75 76 77 78
    H_out = (H - ksize[0] + 2 * paddings[0]) / strides[0] + 1
    W_out = (W - ksize[1] + 2 * paddings[1]) / strides[1] + 1
    out = np.zeros((N, C, H_out, W_out))
    mask = np.zeros((N, C, H_out, W_out))
    for i in xrange(H_out):
        for j in xrange(W_out):
            r_start = np.max((i * strides[0] - paddings[0], 0))
            r_end = np.min((i * strides[0] + ksize[0] - paddings[0], H))
            c_start = np.max((j * strides[1] - paddings[1], 0))
            c_end = np.min((j * strides[1] + ksize[1] - paddings[1], W))
            x_masked = x[:, :, r_start:r_end, c_start:c_end]

            out[:, :, i, j] = np.max(x_masked, axis=(2, 3))

C
chengduoZH 已提交
79 80 81 82 83 84 85 86 87 88
            for n in xrange(N):
                for c in xrange(C):
                    arr = x_masked[n, c, :, :]
                    index = np.where(arr == np.max(arr))
                    sub_row = index[0][0]
                    sub_col = index[1][0]
                    index = (r_start + sub_row) * W + c_start + sub_col
                    mask[n, c, i, j] = index

    return out, mask
C
chengduoZH 已提交
89 90 91 92


class TestMaxPoolWithIndex_Op(OpTest):
    def setUp(self):
C
fix bug  
chengduoZH 已提交
93
        self.init_test_case()
C
chengduoZH 已提交
94 95
        self.init_global()

C
chengduoZH 已提交
96
        input = np.random.random(self.shape).astype("float32")
C
chengduoZH 已提交
97 98
        output, mask = self.pool_forward_naive(input, self.ksize, self.strides,
                                               self.paddings, self.global_pool)
C
fix bug  
chengduoZH 已提交
99
        output = output.astype("float32")
C
chengduoZH 已提交
100
        mask = mask.astype("int32")
C
chengduoZH 已提交
101 102 103 104 105

        self.attrs = {
            'strides': self.strides,
            'paddings': self.paddings,
            'ksize': self.ksize,
C
chengduoZH 已提交
106
            'global_pooling': self.global_pool,
C
chengduoZH 已提交
107 108 109
        }

        self.inputs = {'X': input}
C
chengduoZH 已提交
110
        self.outputs = {'Out': output, "Mask": mask}
C
chengduoZH 已提交
111 112 113 114 115 116 117

    def test_check_output(self):
        self.check_output()

    # def test_check_grad(self):
    #     self.check_grad(set(['X']), ['Out'], max_relative_error=0.07)

C
fix bug  
chengduoZH 已提交
118
    def init_test_case(self):
C
chengduoZH 已提交
119
        self.op_type = "max_pool3d_with_index"
C
chengduoZH 已提交
120 121 122 123 124 125
        self.pool_forward_naive = max_pool3D_forward_naive
        self.shape = [2, 3, 5, 5, 5]
        self.ksize = [3, 3, 3]
        self.strides = [1, 1, 1]
        self.paddings = [1, 1, 1]

C
chengduoZH 已提交
126 127 128
    def init_global(self):
        self.global_pool = False

C
chengduoZH 已提交
129 130

class TestCase1(TestMaxPoolWithIndex_Op):
C
chengduoZH 已提交
131
    def init_global(self):
C
chengduoZH 已提交
132 133 134 135
        self.global_pool = True


class TestCase2(TestMaxPoolWithIndex_Op):
C
fix bug  
chengduoZH 已提交
136
    def init_test_case(self):
C
chengduoZH 已提交
137
        self.op_type = "max_pool3d_with_index"
C
chengduoZH 已提交
138 139 140 141 142 143
        self.pool_forward_naive = max_pool3D_forward_naive
        self.shape = [2, 3, 7, 7, 7]
        self.ksize = [3, 3, 3]
        self.strides = [2, 2, 2]
        self.paddings = [0, 0, 0]

C
chengduoZH 已提交
144
    def init_global(self):
C
chengduoZH 已提交
145
        self.global_pool = True
C
chengduoZH 已提交
146 147


C
chengduoZH 已提交
148 149 150
class TestCase3(TestCase2):
    def init_global(self):
        self.global_pool = False
C
chengduoZH 已提交
151 152


C
chengduoZH 已提交
153 154
#----------------max_pool2d_with_index----------------
class TestCase4(TestMaxPoolWithIndex_Op):
C
fix bug  
chengduoZH 已提交
155
    def init_test_case(self):
C
chengduoZH 已提交
156
        self.op_type = "max_pool2d_with_index"
C
chengduoZH 已提交
157 158 159 160 161 162
        self.pool_forward_naive = max_pool2D_forward_naive
        self.shape = [2, 3, 7, 7]
        self.ksize = [3, 3]
        self.strides = [1, 1]
        self.paddings = [1, 1]

C
chengduoZH 已提交
163 164
    def init_global(self):
        self.global_pool = True
C
chengduoZH 已提交
165

C
chengduoZH 已提交
166

C
chengduoZH 已提交
167
class TestCase5(TestCase4):
C
chengduoZH 已提交
168
    def init_global(self):
C
chengduoZH 已提交
169
        self.global_pool = False
C
chengduoZH 已提交
170 171 172 173


class TestCase6(TestMaxPoolWithIndex_Op):
    def init_test_case(self):
C
chengduoZH 已提交
174
        self.op_type = "max_pool2d_with_index"
C
chengduoZH 已提交
175 176 177 178 179 180
        self.pool_forward_naive = max_pool2D_forward_naive
        self.shape = [2, 3, 7, 7]
        self.ksize = [3, 3]
        self.strides = [2, 2]
        self.paddings = [0, 0]

C
chengduoZH 已提交
181
    def init_global(self):
C
chengduoZH 已提交
182
        self.global_pool = True
C
chengduoZH 已提交
183 184


C
chengduoZH 已提交
185 186 187
class TestCase7(TestCase6):
    def init_global(self):
        self.global_pool = False
C
chengduoZH 已提交
188 189 190 191


if __name__ == '__main__':
    unittest.main()