test_norm_op.py 2.3 KB
Newer Older
D
dzhwinter 已提交
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65
import unittest
import numpy as np
from op_test import OpTest


def norm(input, scale, epsilon):
    s0, s1, s2, s3 = input.shape
    x_square = input * input
    for i in xrange(s0):
        input_batch = input[i:i + 1, :, :, :]
        input_batch = input_batch.reshape(s1, s2 * s3)
        x_square_batch = x_square[i:i + 1, :, :, :]
        x_square_batch = x_square_batch.reshape(s1, s2 * s3)
        square_colsum = x_square_batch.sum(axis=0) + epsilon
        tmp = pow(square_colsum, 0.5)
        tmp = np.reciprocal(tmp)
        tmp_tile = np.tile(tmp, s1)
        tmp_tile = tmp_tile.reshape(s1, s2 * s3)
        scale_tile = np.tile(scale, (1, s2 * s3))
        scale_tile = scale_tile.reshape(s1, s2 * s3)
        out_batch = input_batch * tmp_tile * scale_tile
        out_batch = out_batch.reshape(1, s1, s2, s3)
        if i == 0:
            out = out_batch
        else:
            out = np.concatenate((out, out_batch), 0)
    out.reshape(s0, s1, s2, s3)
    return out


class TestNormOp(OpTest):
    def setUp(self):
        self.op_type = "norm"
        self.init_test_case()
        input = np.random.random(self.shape).astype("float32")
        scale = np.array([10, 10, 10])
        self.inputs = {
            'X': input.astype('float32'),
            'Scale': scale.astype('float32')
        }
        self.attrs = {'epsilon': self.epsilon}
        output = norm(input, scale, self.epsilon)
        self.outputs = {'Out': output.astype('float32')}

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
        self.check_grad(['X'], 'Out')

    def init_test_case(self):
S
sweetsky0901 已提交
66
        self.shape = [2, 3, 2, 2]
67 68 69 70 71
        self.epsilon = 1e-6


if __name__ == '__main__':
    unittest.main()