base.py 27.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14
from ..wrapped_decorator import signature_safe_contextmanager, wrap_decorator
S
songyouwei 已提交
15
import decorator
16
import contextlib
17 18
import functools
import inspect
19
import sys
20 21 22
import numpy as np
from paddle.fluid import core
from paddle.fluid import framework
H
hong 已提交
23
from paddle.fluid.multiprocess_utils import CleanupFuncRegistrar
M
minqiyang 已提交
24
from .tracer import Tracer
Z
Zeng Jinle 已提交
25
import logging
26
from ..data_feeder import convert_dtype
L
Leo Chen 已提交
27
import warnings
28
from ..framework import _get_paddle_place, _in_eager_mode
29
import paddle
30

31
__all__ = [
32 33
    'no_grad', 'no_grad_', 'grad', 'guard', 'enable_dygraph', 'disable_dygraph',
    'enabled', 'to_variable'
34
]
35

36 37 38 39 40 41 42 43 44 45 46
# Flag that indicates whether running code under `@declarative`
_in_declarative_mode_ = False


def in_declarative_mode():
    """
    Return a bool value that indicates whether running code under `@declarative`

    """
    return _in_declarative_mode_

47

48 49 50 51 52 53 54 55 56 57 58
def _switch_to_static_graph_(func):
    def __impl__(*args, **kwargs):
        with framework._dygraph_guard(None):
            return func(*args, **kwargs)

    return __impl__


switch_to_static_graph = wrap_decorator(_switch_to_static_graph_)


59 60 61 62 63 64 65 66 67 68
@signature_safe_contextmanager
def _switch_declarative_mode_guard_(is_declarative=True):

    global _in_declarative_mode_
    original_val = _in_declarative_mode_
    _in_declarative_mode_ = is_declarative
    yield
    _in_declarative_mode_ = original_val


69 70 71 72 73 74
@signature_safe_contextmanager
def program_desc_tracing_guard(enable):
    tracer = framework._dygraph_tracer()
    if tracer:
        original_val = tracer._enable_program_desc_tracing
        tracer._enable_program_desc_tracing = enable
75 76 77 78 79
    try:
        yield
    finally:
        if tracer:
            tracer._enable_program_desc_tracing = original_val
80 81


82 83 84
_functional_dygraph_context_manager = None


85 86
@signature_safe_contextmanager
def param_guard(parameters):
87
    # Note: parameters is a reference of self._parameters or self._buffers
88
    if in_declarative_mode() and not framework.in_dygraph_mode() and parameters:
89 90
        origin_parameters = parameters.copy()
        for name, var_base in parameters.items():
91 92 93 94 95
            if isinstance(var_base, list):
                new_var = [_convert_into_variable(var) for var in var_base]
            else:
                new_var = _convert_into_variable(var_base)
            parameters[name] = new_var
96 97 98 99 100 101
        yield
        parameters.update(origin_parameters)
    else:
        yield


J
Jiabin Yang 已提交
102
def _convert_into_variable(tensor):
103 104 105
    """
    Convert Varbase into Variable.
    """
J
Jiabin Yang 已提交
106
    if isinstance(tensor, (core.eager.Tensor, core.VarBase)):
107
        # Check whether has been created before.
J
Jiabin Yang 已提交
108
        new_var = tensor.block._find_var_recursive(tensor.name)
109 110 111
        if new_var is not None:
            assert isinstance(new_var, framework.Variable)
        # Convert ParamBase into Parameter with same attributes in dy2stat.
J
Jiabin Yang 已提交
112 113 114
        elif isinstance(tensor,
                        (framework.EagerParamBase, framework.ParamBase)):
            new_var = tensor._to_static_var(to_parameter=True)
115 116 117 118 119 120 121 122 123
        else:
            # Note(Aurelius84): Convert VarBase in self._buffers into Variable with
            # same attributes and set persistable=True to allow saving this var.
            # Because users can create a VarBase in `__init__`  like a
            # `mask` Tensor or `hidden_0` in RNN layers, which is equivalent to a Parameter
            # and necessary for inferring. It will be pruned if it's not necessary for inferring.

            # But if its shape is empty while created from `create_variable()`, we consider this buffer
            # non-persistable. See case of `drop_state` in lstm api.
J
Jiabin Yang 已提交
124
            is_persistable = len(tensor.shape) > 0
125

J
Jiabin Yang 已提交
126
            new_var = tensor._to_static_var(
127 128 129
                to_parameter=False, persistable=is_persistable)
        return new_var
    else:
J
Jiabin Yang 已提交
130
        return tensor
131 132


133
def enabled():
134 135 136
    """
    This function checks whether the program runs in dynamic graph mode or not.
    You can enter dynamic graph mode with :ref:`api_fluid_dygraph_guard` api,
137 138
    or enable and disable dynamic graph mode with :ref:`api_fluid_dygraph_enable_dygraph`
    and :ref:`api_fluid_dygraph_disable_dygraph` api .
139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156

    **Note**:
        ``fluid.dygraph.enabled`` is the alias of ``fluid.in_dygraph_mode``, and
        ``fluid.in_dygraph_mode`` is recommended to use.

    Returns:
        bool: Whether the program is running in dynamic graph mode.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid

            fluid.enable_dygraph()  # Now we are in dygragh mode
            print(fluid.dygraph.enabled())  # True
            fluid.disable_dygraph()
            print(fluid.dygraph.enabled())  # False
    """
L
lujun 已提交
157
    return framework.in_dygraph_mode()
158 159


160 161
def enable_dygraph(place=None):
    """
162 163 164 165 166

    .. note::
        Dynamic graph mode is turn ON by default since paddle 2.0.0

    This API turn OFF static graph mode. You can turn ON static graph mode by `enable_static <./disable_dygraph_en.html>`_ .
167 168

    Parameters:
169 170 171
        place(paddle.CPUPlace|paddle.CUDAPlace|str, optional): Place to run dynamic graph. Default: None. Which means that the running place will be 
            determined according to the way of paddle compilation. If ``place`` is string, It can be ``cpu``, and ``gpu:x``, where ``x`` is the
            index of the GPUs.
172 173 174 175 176 177 178

    return:
        None

    Examples:
        .. code-block:: python

179 180 181 182 183 184 185 186
            import paddle
            print(paddle.in_dynamic_mode())  # True, dynamic mode is turn ON by default since paddle 2.0.0

            paddle.enable_static()
            print(paddle.in_dynamic_mode())  # False, Now we are in static mode

            paddle.disable_static()
            print(paddle.in_dynamic_mode())  # True, Now we are in dynamic mode
187 188 189

    """
    global _functional_dygraph_context_manager
S
songyouwei 已提交
190
    if _functional_dygraph_context_manager is None:
191 192
        _functional_dygraph_context_manager = guard(
            place=_get_paddle_place(place))
S
songyouwei 已提交
193
        _functional_dygraph_context_manager.__enter__()
194

H
hong 已提交
195 196 197
        # call disable_dygraph when Python exit
        CleanupFuncRegistrar.register(disable_dygraph)

198 199 200

def disable_dygraph():
    """
201 202 203 204 205

    .. note::
        Dynamic graph mode is turn ON by default since paddle 2.0.0

    This API turn ON static graph mode. You can turn ON static graph mode by `disable_static <./enable_dygraph_en.html>`_ .
206 207 208 209 210 211 212

    return:
        None

    Examples:
        .. code-block:: python

213 214 215 216 217 218 219 220
            import paddle
            print(paddle.in_dynamic_mode())  # True, dynamic mode is turn ON by default since paddle 2.0.0

            paddle.enable_static()
            print(paddle.in_dynamic_mode())  # False, Now we are in static mode

            paddle.disable_static()
            print(paddle.in_dynamic_mode())  # True, Now we are in dynamic mode
221 222 223 224 225 226 227 228

    """
    global _functional_dygraph_context_manager
    if _functional_dygraph_context_manager is not None:
        _functional_dygraph_context_manager.__exit__(*sys.exc_info())
        _functional_dygraph_context_manager = None


229 230 231 232
@signature_safe_contextmanager
def _switch_tracer_mode_guard_(is_train=True):
    tracer = framework._dygraph_tracer()
    if tracer:
233 234
        has_grad = tracer._has_grad
        tracer._has_grad = is_train
235 236 237
        try:
            yield
        finally:
238
            tracer._has_grad = has_grad
239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302
    else:
        yield


def no_grad(func=None):
    """
    :api_attr: imperative

    Create a context which disables dygraph gradient calculation.
    In this mode, the result of every computation will have `stop_gradient=True`.

    Also functions as a decorator. (Make sure to instantiate without parenthesis.)

    Examples:

     .. code-block:: python

        import numpy as np
        import paddle.fluid as fluid

        # use as generator

        data = np.array([[2, 3], [4, 5]]).astype('float32')
        with fluid.dygraph.guard():
            l0 = fluid.Linear(2, 2)  # l0.weight.gradient() is None
            l1 = fluid.Linear(2, 2)
            with fluid.dygraph.no_grad():
                # l1.weight.stop_gradient is False
                tmp = l1.weight * 2  # tmp.stop_gradient is True
            x = fluid.dygraph.to_variable(data)
            y = l0(x) + tmp
            o = l1(y)
            o.backward()
            print(tmp.gradient() is None)  # True
            print(l0.weight.gradient() is None)  # False

        # use as decorator

        @fluid.dygraph.no_grad
        def test_layer():
            with fluid.dygraph.guard():
                inp = np.ones([3, 1024], dtype='float32')
                t = fluid.dygraph.base.to_variable(inp)
                linear1 = fluid.Linear(1024, 4, bias_attr=False)
                linear2 = fluid.Linear(4, 4)
                ret = linear1(t)
                dy_ret = linear2(ret)

        test_layer()

    """
    if func is None:
        return _switch_tracer_mode_guard_(is_train=False)
    else:

        @decorator.decorator
        def __impl__(func, *args, **kwargs):
            with _switch_tracer_mode_guard_(is_train=False):
                return func(*args, **kwargs)

        return __impl__(func)


class no_grad_:
303
    """
304 305
    :api_attr: imperative

306
    Create a context which disables dygraph gradient calculation.
307 308
    In this mode, the result of every computation will have `stop_gradient` set
    to `True`.
309

310
    Also functions as a decorator. (Make sure to use an instance.)
311 312 313 314 315 316

    Examples:

     .. code-block:: python

        import numpy as np
317
        import paddle
318

319 320 321
        # use as generator

        data = np.array([[2, 3], [4, 5]]).astype('float32')
322 323 324
        l0 = paddle.nn.Linear(2, 2)  # l0.weight.gradient() is None
        l1 = paddle.nn.Linear(2, 2)
        with paddle.no_grad():
325 326
            # l1.weight.stop_gradient is False
            tmp = l1.weight * 2  # tmp.stop_gradient is True
327
        x = paddle.to_tensor(data)
328 329 330 331 332
        y = l0(x) + tmp
        o = l1(y)
        o.backward()
        print(tmp.gradient() is None)  # True
        print(l0.weight.gradient() is None)  # False
333 334 335

        # use as decorator

336
        @paddle.no_grad()
337
        def test_layer():
338
            inp = np.ones([3, 1024], dtype='float32')
339 340 341
            t = paddle.to_tensor(inp)
            linear1 = paddle.nn.Linear(1024, 4, bias_attr=False)
            linear2 = paddle.nn.Linear(4, 4)
342 343
            ret = linear1(t)
            dy_ret = linear2(ret)
344 345 346 347

        test_layer()
    """

348
    def __call__(self, func):
S
songyouwei 已提交
349
        @decorator.decorator
350 351
        def _decorate_function(func, *args, **kwargs):
            with self:
352
                return func(*args, **kwargs)
353

354 355 356 357 358 359 360 361 362 363 364 365 366 367 368
        @decorator.decorator
        def _decorate_generator(func, *args, **kwargs):
            gen = func(*args, **kwargs)
            with self:
                for x in gen:
                    yield x

        if inspect.isgeneratorfunction(func):
            return _decorate_generator(func)
        else:
            return _decorate_function(func)

    def __enter__(self):
        tracer = framework._dygraph_tracer()
        if tracer:
369 370
            self.orig = tracer._has_grad
            tracer._has_grad = False
371 372 373 374

    def __exit__(self, *args):
        tracer = framework._dygraph_tracer()
        if tracer:
375
            tracer._has_grad = self.orig
376 377


S
rename  
sneaxiy 已提交
378
@signature_safe_contextmanager
P
Paddle CI 已提交
379
def guard(place=None):
380
    """
381 382
    :api_attr: imperative

383
    This context will create a dygraph context for dygraph to run, using python ``with`` statement.
384

385
    Parameters:
386 387 388 389
        place(fluid.CPUPlace| fluid.CUDAPlace|str, optional): Place to execute dygraph. 
            If None, the running place will be determined according to the way of paddle compilation.
            If ``place`` is string, It can be ``cpu``, ``gpu:x`` and ``xpu:x``, where ``x`` is the
            index of the GPUs or XPUs. Default: None
390 391 392 393 394 395 396 397 398 399 400 401

    return:
        None

    Examples:

     .. code-block:: python

        import numpy as np
        import paddle.fluid as fluid

        with fluid.dygraph.guard():
402
            inp = np.ones([3, 1024], dtype='float32')
403
            t = fluid.dygraph.base.to_variable(inp)
404 405 406 407
            linear1 = fluid.Linear(1024, 4, bias_attr=False)
            linear2 = fluid.Linear(4, 4)
            ret = linear1(t)
            dy_ret = linear2(ret)
408 409

    """
410 411
    train = framework.Program()
    startup = framework.Program()
J
Jiabin Yang 已提交
412
    tracer = Tracer()
413
    VarBase = core.VarBase
M
minqiyang 已提交
414

415
    if place is not None:
416
        expected_place = _get_paddle_place(place)
417 418
    else:
        expected_place = framework._current_expected_place()
M
minqiyang 已提交
419

420 421
    with framework.program_guard(train, startup):
        with framework.unique_name.guard():
L
lujun 已提交
422
            with framework._dygraph_guard(tracer):
423
                with framework._dygraph_place_guard(expected_place):
P
Paddle CI 已提交
424
                    yield
425 426


427 428 429 430
@framework.dygraph_only
def grad(outputs,
         inputs,
         grad_outputs=None,
Z
Zeng Jinle 已提交
431
         retain_graph=None,
432
         create_graph=False,
Z
Zeng Jinle 已提交
433 434
         only_inputs=True,
         allow_unused=False,
435
         no_grad_vars=None):
Z
Zeng Jinle 已提交
436 437
    ''' 
    .. note::
438
        **This API is ONLY available in imperative mode.**
Z
Zeng Jinle 已提交
439 440 441 442

    This API computes the sum of gradients of `outputs` with respect to each `inputs` .

    Parameters:
443 444 445 446
        outputs (Tensor|list(Tensor)|tuple(Tensor)): the output Tensor or 
            Tensor list/tuple of the graph to compute gradients.
        inputs (Tensor|list(Tensor)|tuple(Tensor)): the input Tensor or 
            Tensor list/tuple of the graph to compute gradients. The returned
Z
Zeng Jinle 已提交
447
            values of this API are the gradients of `inputs` . 
448
        grad_outputs (Tensor|list(Tensor|None)|tuple(Tensor|None), optional): 
Z
Zeng Jinle 已提交
449 450 451 452 453 454
            initial gradient values of `outputs` . If `grad_outputs` is None, 
            the initial gradient values of `outputs` would be Tensors filled with 1; 
            if `grad_outputs` is not None, it must have the same length as `outputs` , 
            and in this case, the initial gradient value of the i-th `outputs` would
            be: (1) a Tensor filled with 1 when the i-th element of `grad_outputs` 
            is None; (2) the i-th element of `grad_outputs` when the i-th element of
455
            `grad_outputs` is a Tensor. Default None.
Z
Zeng Jinle 已提交
456 457 458 459 460 461 462 463 464 465 466
        retain_graph (bool, optional): whether to retain the forward graph which 
            is used to calculate the gradient. When it is True, the graph would 
            be retained, in which way users can calculate backward twice for the 
            same graph. When it is False, the graph would be freed. Default None,
            which means it is equal to `create_graph` . 
        create_graph (bool, optional): whether to create the gradient graphs of
            the computing process. When it is True, higher order derivatives are
            supported to compute; when it is False, the gradient graphs of the
            computing process would be discarded. Default False.
        only_inputs (bool, optional): whether to only compute the gradients of
            `inputs` . If it is False, the gradients of all remaining leaf 
467
            Tensors in the graph would be also computed and accumulated. 
Z
Zeng Jinle 已提交
468 469 470 471
            If it is True, only the gradients of `inputs` would be computed.
            Default True. only_inputs=False is under development, and it is
            not supported yet.    
        allow_unused (bool, optional): whether to raise error or return None if some 
472
            Tensors of `inputs` are unreachable in the graph. If some Tensors of 
Z
Zeng Jinle 已提交
473 474 475
            `inputs` are unreachable in the graph (i.e., their gradients are None),  
            error would be raised if allow_unused=False, or None would be returned as
            their gradients if allow_unused=True. Default False.
476 477
        no_grad_vars (Tensor|list(Tensor)|tuple(Tensor)|set(Tensor), optional): 
            the Tensors whose gradients are not needed to compute. Default None.
Z
Zeng Jinle 已提交
478 479

    Returns:
L
levi131 已提交
480
        list: a list of Tensors, whose length is the same as the Tensor number 
481
        inside `inputs`, and the i-th returned Tensor is the sum of gradients of 
Z
Zeng Jinle 已提交
482 483 484 485 486
        `outputs` with respect to the i-th `inputs`.

    Examples 1:
        .. code-block:: python

487
            import paddle
Z
Zeng Jinle 已提交
488 489

            def test_dygraph_grad(create_graph):
490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515
                x = paddle.ones(shape=[1], dtype='float32')
                x.stop_gradient = False
                y = x * x

                # Since y = x * x, dx = 2 * x
                dx = paddle.grad(
                        outputs=[y],
                        inputs=[x],
                        create_graph=create_graph,
                        retain_graph=True)[0]

                z = y + dx

                # If create_graph = False, the gradient of dx
                # would not be backpropagated. Therefore,
                # z = x * x + dx, and x.gradient() = 2 * x = 2.0

                # If create_graph = True, the gradient of dx
                # would be backpropagated. Therefore,
                # z = x * x + dx = x * x + 2 * x, and
                # x.gradient() = 2 * x + 2 = 4.0

                z.backward()
                return x.gradient()

            print(test_dygraph_grad(create_graph=False)) # [2.]
Z
Zeng Jinle 已提交
516 517 518 519 520
            print(test_dygraph_grad(create_graph=True)) # [4.]

    Examples 2:
        .. code-block:: python

521
            import paddle
Z
Zeng Jinle 已提交
522 523

            def test_dygraph_grad(grad_outputs=None):
524
                x = paddle.to_tensor(2.0)
Z
Zeng Jinle 已提交
525 526 527 528 529 530 531 532 533 534 535 536 537 538 539
                x.stop_gradient = False

                y1 = x * x
                y2 = x * 3 

                # If grad_outputs=None, dy1 = [1], dy2 = [1].
                # If grad_outputs=[g1, g2], then:
                #    - dy1 = [1] if g1 is None else g1
                #    - dy2 = [1] if g2 is None else g2

                # Since y1 = x * x, dx = 2 * x * dy1.
                # Since y2 = x * 3, dx = 3 * dy2.
                # Therefore, the final result would be:
                # dx = 2 * x * dy1 + 3 * dy2 = 4 * dy1 + 3 * dy2.

540
                dx = paddle.grad(
Z
Zeng Jinle 已提交
541 542 543 544 545 546
                    outputs=[y1, y2], 
                    inputs=[x],
                    grad_outputs=grad_outputs)[0]

                return dx.numpy()

547
            grad_value = paddle.to_tensor(4.0)
Z
Zeng Jinle 已提交
548 549 550 551
            # dy1 = [1], dy2 = [1]
            print(test_dygraph_grad(None)) # [7.]

            # dy1 = [1], dy2 = [4]
552
            print(test_dygraph_grad([None, grad_value])) # [16.]
Z
Zeng Jinle 已提交
553 554

            # dy1 = [4], dy2 = [1]
555
            print(test_dygraph_grad([grad_value, None])) # [19.]
Z
Zeng Jinle 已提交
556 557

            # dy1 = [3], dy2 = [4]
558
            grad_y1 = paddle.to_tensor(3.0)
559
            print(test_dygraph_grad([grad_y1, grad_value])) # [24.]
Z
Zeng Jinle 已提交
560 561
	'''

562 563 564 565 566 567
    def check_in_out(in_out_list, name):
        assert in_out_list is not None, "{} should not be None".format(name)

        if isinstance(in_out_list, (list, tuple)):
            assert len(in_out_list) > 0, "{} cannot be empty".format(name)
            for each_var in in_out_list:
568 569 570 571 572 573 574 575 576
                if core._in_eager_mode():
                    assert isinstance(
                        each_var, core.eager.
                        Tensor), "Elements of {} must be Tensor".format(name)
                else:
                    assert isinstance(
                        each_var,
                        core.VarBase), "Elements of {} must be Variable".format(
                            name)
577 578
            return in_out_list
        else:
579 580 581 582 583 584 585 586
            if core._in_eager_mode():
                assert isinstance(
                    in_out_list, core.eager.
                    Tensor), "{} must be Tensor or list of Tensor".format(name)
            else:
                assert isinstance(
                    in_out_list, core.VarBase
                ), "{} must be Variable or list of Variable".format(name)
587 588 589 590 591 592 593 594 595 596 597
            return [in_out_list]

    outputs = check_in_out(outputs, 'outputs')
    inputs = check_in_out(inputs, 'inputs')

    if grad_outputs is not None:
        if not isinstance(grad_outputs, (list, tuple)):
            grad_outputs = [grad_outputs]

        for each_var in grad_outputs:
            if each_var is not None:
598 599 600 601 602 603 604 605
                if core._in_eager_mode():
                    assert isinstance(
                        each_var, core.eager.Tensor
                    ), "grad_outputs must be None, a Variable or a list containing None or Variables"
                else:
                    assert isinstance(
                        each_var, core.VarBase
                    ), "grad_outputs must be None, a Variable or a list containing None or Variables"
606 607 608 609 610 611 612
    else:
        grad_outputs = []

    if len(grad_outputs) > 0:
        assert len(grad_outputs) == len(
            outputs), "The length of grad_outputs must be equal to outputs"

Z
Zeng Jinle 已提交
613 614 615 616
    if no_grad_vars is None:
        no_grad_vars = []
    elif isinstance(no_grad_vars, core.VarBase):
        no_grad_vars = [no_grad_vars]
617 618
    elif isinstance(no_grad_vars, core.eager.Tensor):
        no_grad_vars = [no_grad_vars]
Z
Zeng Jinle 已提交
619 620 621
    elif isinstance(no_grad_vars, (list, tuple, set)):
        no_grad_vars = list(no_grad_vars)
        for var in no_grad_vars:
622 623 624 625 626 627 628 629
            if core._in_eager_mode():
                assert isinstance(
                    var,
                    core.eager.Tensor), "no_grad_vars can only contains Tensor"
            else:
                assert isinstance(
                    var,
                    core.VarBase), "no_grad_vars can only contains Variable"
630
    else:
631 632 633 634 635 636 637
        if core._in_eager_mode():
            raise AssertionError(
                "no_grad_vars must be None, Tensor or list/tuple/set of Tensors")
        else:
            raise AssertionError(
                "no_grad_vars must be None, Variable or list/tuple/set of Variables"
            )
638 639 640

    assert isinstance(create_graph, bool), "create_graph must be True or False"

Z
Zeng Jinle 已提交
641 642 643 644 645 646 647 648 649 650 651
    if retain_graph is None:
        retain_graph = create_graph

    assert isinstance(retain_graph,
                      bool), "retain_graph must be None, True or False"

    assert isinstance(allow_unused, bool), "allow_unused must be True or False"

    assert isinstance(only_inputs, bool), "only_inputs must be True or False"
    assert only_inputs, "only_inputs=False is not supported yet"

652 653 654 655 656
    if core._in_eager_mode():
        return core.eager.run_partial_grad(
            outputs, inputs, grad_outputs, retain_graph, create_graph,
            only_inputs, allow_unused, no_grad_vars)

657 658
    place = core.Place()
    place.set_place(framework._current_expected_place())
659 660 661
    return core.dygraph_partial_grad(inputs, outputs, grad_outputs,
                                     no_grad_vars, place, create_graph,
                                     retain_graph, allow_unused, only_inputs)
662 663


664
@framework.dygraph_only
665
def to_variable(value, name=None, zero_copy=None, dtype=None):
666
    r"""
667 668
    :api_attr: imperative

C
chentianyu03 已提交
669 670
    The API will create a ``Variable`` object from 
    tuple, list, numpy\.ndarray or Variable object.
671

672
    Parameters:
C
chentianyu03 已提交
673 674
        value(tuple|list|ndarray|Variable|Tensor): Initial data. 
            Can be a list, tuple, NumPy ndarray, Variable, Tensor.
675 676 677
            The shape can be multi-dimensional. The data type is one of 
            numpy\.{float16, float32, float64, int16, int32, int64, 
            uint8, uint16, complex64, complex128}.
678 679
        name(str, optional): The default value is None. Normally there is no 
            need for user to set this property. For more information, please 
L
Leo Chen 已提交
680
            refer to :ref:`api_guide_Name` . 
681 682
        zero_copy(bool, optional): Whether to share memory with the input numpy 
            array. This parameter only works with CPUPlace and will be set to 
L
Leo Chen 已提交
683
            True when it is None. Default: None. (Note: zero_copy is discarded temporally for some reason.)
684 685 686
        dtype(str, optional): The desired data type of returned ``Variable`` .
            Can be 'bool' , 'float16' , 'float32' , 'float64' , 'int8' , 'int16' , 
            'int32' , 'int64' , 'uint8' . Default: None.
687

688
    Returns:
C
chentianyu03 已提交
689
        Variable : If ``value`` is a tuple/list/numpy\.ndarray object, 
690
            return ``Tensor`` created from the corresponding numpy\.ndarray object, which has 
C
chentianyu03 已提交
691
            same data type and shape with ``value``. 
692

693 694 695 696 697 698 699 700

    Examples:

     .. code-block:: python

        import numpy as np
        import paddle.fluid as fluid

701
        with fluid.dygraph.guard(fluid.CPUPlace()):
702
            x = np.ones([2, 2], np.float32)
703 704 705
            y = fluid.dygraph.to_variable(x, zero_copy=False)
            x[0][0] = -1
            y[0][0].numpy()  # array([1.], dtype=float32)
706
            y = fluid.dygraph.to_variable(x)
707 708
            x[0][0] = 0
            y[0][0].numpy()  # array([0.], dtype=float32)
709 710 711 712
            c = np.array([2+1j, 2])
            z = fluid.dygraph.to_variable(c)
            z.numpy() # array([2.+1.j, 2.+0.j])
            z.dtype # 'complex128'
713 714 715 716 717 718 719

            y = fluid.dygraph.to_variable([[0.1, 1.2], [2.2, 3.1], [4.9, 5.2]])
            y.shape     # [3L, 2L]

            y = fluid.dygraph.to_variable(((0.1, 1.2), (2.2, 3.1), (4.9, 5.2)), dtype='int32')
            y.shape     # [3L, 2L]

720
    """
721
    support_type = (list, tuple, np.ndarray, core.VarBase, framework.Variable,
C
chentianyu03 已提交
722
                    core.Tensor, core.LoDTensor)
723 724 725 726
    if not isinstance(value, support_type):
        raise TypeError(
            "The type of 'value' in fluid.dygraph.to_variable must be %s, but received %s."
            % (support_type, type(value)))
C
chentianyu03 已提交
727
    if isinstance(value, (core.VarBase, framework.Variable)):
728 729 730 731
        return value
    elif isinstance(value, (core.Tensor, core.LoDTensor)):
        return core.VarBase(value)
    else:
732 733
        if isinstance(framework._current_expected_place(),
                      framework.core.CPUPlace):
L
Leo Chen 已提交
734
            #TODO(zhiqiu): we found two problems when enable zero_copy on CPUPlace.
735
            # (1): eigen requires 16-bytes alignments, but the data of numpy array may not statisfy.
L
Leo Chen 已提交
736 737 738 739 740 741 742 743 744
            # Details: https://eigen.tuxfamily.org/dox/group__TopicUnalignedArrayAssert.html
            # (2): when used in flask framework, it may result in hang.
            # Details: https://github.com/PaddlePaddle/Paddle/issues/26635
            # So, we temporally diable the zero_copy strategy.
            if zero_copy == True:
                warnings.warn(
                    "Currently, zero_copy is not supported, and it will be discarded."
                )
                zero_copy = False
745 746
        else:
            assert not zero_copy, "zero_copy mode can only be used with CPUPlace"
747 748 749 750 751 752 753 754 755

        if not isinstance(value, np.ndarray):
            value = np.array(value)

        if dtype is not None:
            dtype = convert_dtype(dtype)
            if value.dtype != dtype:
                value = value.astype(dtype)

756
        if _in_eager_mode():
757 758 759
            return core.eager.Tensor(value,
                                     framework._current_expected_place(), False,
                                     zero_copy, name if name else None, True)
760 761 762 763 764 765 766 767
        else:
            py_var = core.VarBase(
                value=value,
                place=framework._current_expected_place(),
                persistable=False,
                zero_copy=zero_copy,
                name=name if name else '')
            return py_var