layer_norm_op.h 12.7 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
C
chengduoZH 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once
P
Pei Yang 已提交
16

17
#include <algorithm>
P
Pei Yang 已提交
18
#include <vector>
W
wanghuancoder 已提交
19

Y
Yi Wang 已提交
20 21
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h"
W
Wu Yi 已提交
22
#include "paddle/fluid/operators/elementwise/elementwise_op_function.h"
Y
Yu Yang 已提交
23
#include "paddle/fluid/operators/math/blas.h"
24 25
#if !defined(PADDLE_WITH_CUDA) && !defined(_WIN32) && !defined(__APPLE__) && \
    !defined(__OSX__)
26
#include "paddle/fluid/operators/jit/kernels.h"
27
#endif
Y
Yi Wang 已提交
28
#include "paddle/fluid/operators/math/math_function.h"
C
chengduoZH 已提交
29

W
wanghuancoder 已提交
30 31 32 33 34 35 36
namespace paddle {
namespace platform {
class CPUDeviceContext;
class CUDADeviceContext;
}  // namespace platform
}  // namespace paddle

C
chengduoZH 已提交
37 38 39
namespace paddle {
namespace operators {

X
Xin Pan 已提交
40 41 42 43 44 45 46 47 48 49 50 51
// Wrap RowwiseMean and ColwiseMean.
// Reuse the cpu codes and replace the gpu codes with cublas_gemv, which is
// significantly faster. Unlike the RowwiseMean and ColwiseMean, the
// implementation only considers 2D.
template <typename DeviceContext, typename T>
struct RowwiseMean2D {
  RowwiseMean2D(int left, int right, const platform::DeviceContext& dev_ctx);

  void operator()(const platform::DeviceContext& context,
                  const framework::Tensor& input, framework::Tensor* vec);
};

52
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
X
Xin Pan 已提交
53 54 55 56 57 58 59 60 61 62 63
template <typename T>
class RowwiseMean2D<platform::CUDADeviceContext, T> {
 public:
  RowwiseMean2D(int left, int right, const platform::DeviceContext& dev_ctx)
      : left_(left), right_(right) {
    framework::DDim ones_dim({right_});
    divisor_.mutable_data<T>(ones_dim, dev_ctx.GetPlace());
    math::set_constant(dev_ctx, &divisor_, 1.0 / right);
  }
  void operator()(const platform::CUDADeviceContext& context,
                  const framework::Tensor& input, framework::Tensor* out) {
Y
Yu Yang 已提交
64 65 66
    math::GetBlas<platform::CUDADeviceContext, T>(context).GEMV(
        false, left_, right_, 1., input.data<T>(), divisor_.data<T>(), 0.,
        out->data<T>());
X
Xin Pan 已提交
67 68 69 70 71 72 73
  }

 private:
  int left_;
  int right_;
  framework::Tensor divisor_;
};
X
Xin Pan 已提交
74
#endif
X
Xin Pan 已提交
75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97

template <typename T>
class RowwiseMean2D<platform::CPUDeviceContext, T> {
 public:
  RowwiseMean2D(int left, int right, const platform::DeviceContext& dev_ctx) {}

  void operator()(const platform::CPUDeviceContext& context,
                  const framework::Tensor& input, framework::Tensor* out) {
    row_mean_(context, input, out);
  }

 private:
  math::RowwiseMean<platform::CPUDeviceContext, T> row_mean_;
};

template <typename DeviceContext, typename T>
struct ColwiseSum2D {
  ColwiseSum2D(int left, int right, const platform::DeviceContext& dev_ctx);

  void operator()(const platform::DeviceContext& context,
                  const framework::Tensor& input, framework::Tensor* vec);
};

98
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
X
Xin Pan 已提交
99 100 101 102 103 104 105 106 107 108 109 110
template <typename T>
class ColwiseSum2D<platform::CUDADeviceContext, T> {
 public:
  ColwiseSum2D(int left, int right, const platform::DeviceContext& dev_ctx)
      : left_(left), right_(right) {
    framework::DDim ones_dim({left_});
    divisor_.mutable_data<T>(ones_dim, dev_ctx.GetPlace());
    math::set_constant(dev_ctx, &divisor_, 1.0);
  }

  void operator()(const platform::CUDADeviceContext& context,
                  const framework::Tensor& input, framework::Tensor* out) {
Y
Yu Yang 已提交
111 112 113
    math::GetBlas<platform::CUDADeviceContext, T>(context).GEMV(
        true, left_, right_, 1., input.data<T>(), divisor_.data<T>(), 0.,
        out->data<T>());
X
Xin Pan 已提交
114 115 116 117 118 119 120
  }

 private:
  int left_;
  int right_;
  framework::Tensor divisor_;
};
X
Xin Pan 已提交
121
#endif
X
Xin Pan 已提交
122 123 124 125 126 127 128 129 130 131 132 133 134 135 136

template <typename T>
class ColwiseSum2D<platform::CPUDeviceContext, T> {
 public:
  ColwiseSum2D(int left, int right, const platform::DeviceContext& dev_ctx) {}

  void operator()(const platform::CPUDeviceContext& context,
                  const framework::Tensor& input, framework::Tensor* out) {
    col_wise_(context, input, out);
  }

 private:
  math::ColwiseSum<platform::CPUDeviceContext, T> col_wise_;
};

C
chengduoZH 已提交
137 138 139 140 141 142 143 144 145
template <typename T>
struct SubAndSquareFunctor {
  inline HOSTDEVICE T operator()(T a, T b) const { return (a - b) * (a - b); }
};

template <typename T>
struct DivAndSqrtFunctor {
  explicit DivAndSqrtFunctor(T epsilon) { epsilon_ = epsilon; }
  inline HOSTDEVICE T operator()(T a, T b) const {
C
chengduoZH 已提交
146
    return a / (sqrt(b + epsilon_));
C
chengduoZH 已提交
147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163
  }

 private:
  T epsilon_;
};

template <typename T>
struct MulInvVarFunctor {
  inline HOSTDEVICE T operator()(T a, T b) const {
    return a * std::sqrt(1.0 / b);
  }
};

using Tensor = framework::Tensor;
using LoDTensor = framework::LoDTensor;
using DataLayout = framework::DataLayout;

164
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
P
Pei Yang 已提交
165 166 167
template <typename T>
class LayerNormDirectCUDAFunctor {
 public:
168
  void operator()(gpuStream_t stream, const T* input,
P
Pei Yang 已提交
169 170 171 172 173 174
                  std::vector<int> input_shape, const T* bias, const T* scale,
                  T* output, T* mean, T* variance, int begin_norm_axis,
                  float eps);
};
#endif

C
chengduoZH 已提交
175 176 177
template <typename DeviceContext, typename T>
class LayerNormKernel : public framework::OpKernel<T> {
 public:
X
Xin Pan 已提交
178
  void Compute(const framework::ExecutionContext& ctx) const override {
C
chengduoZH 已提交
179
    const float epsilon = ctx.Attr<float>("epsilon");
X
Xin Pan 已提交
180 181
    auto* scale = ctx.Input<Tensor>("Scale");
    auto* bias = ctx.Input<Tensor>("Bias");
C
chengduoZH 已提交
182 183
    auto x = *ctx.Input<Tensor>("X");

X
Xin Pan 已提交
184 185 186
    auto* y = ctx.Output<Tensor>("Y");
    auto* mean = ctx.Output<Tensor>("Mean");
    auto* var = ctx.Output<Tensor>("Variance");
C
chengduoZH 已提交
187 188
    const auto begin_norm_axis = ctx.Attr<int>("begin_norm_axis");

C
chengduoZH 已提交
189
    const auto x_dims = x.dims();
C
chengduoZH 已提交
190 191 192 193 194 195 196 197 198 199 200

    y->mutable_data<T>(ctx.GetPlace());
    mean->mutable_data<T>(ctx.GetPlace());
    var->mutable_data<T>(ctx.GetPlace());

    auto matrix_dim = framework::flatten_to_2d(x_dims, begin_norm_axis);
    int left = static_cast<int>(matrix_dim[0]);
    int right = static_cast<int>(matrix_dim[1]);
    framework::DDim matrix_shape({left, right});

    x.Resize(matrix_shape);
C
chengduoZH 已提交
201 202 203
    Tensor out;
    out.ShareDataWith(*y);
    out.Resize(matrix_shape);
C
chengduoZH 已提交
204

205 206
#if defined(PADDLE_WITH_CUDA) || defined(_WIN32) || defined(__APPLE__) || \
    defined(__OSX__)
X
Xin Pan 已提交
207 208
    auto& dev_ctx = ctx.template device_context<DeviceContext>();
    RowwiseMean2D<DeviceContext, T> row_mean(left, right, ctx.device_context());
C
chengduoZH 已提交
209

C
chengduoZH 已提交
210
    // get mean
C
chengduoZH 已提交
211 212
    row_mean(dev_ctx, x, mean);

C
chengduoZH 已提交
213
    // get variance
C
chengduoZH 已提交
214
    ElementwiseComputeEx<SubAndSquareFunctor<T>, DeviceContext, T>(
C
chengduoZH 已提交
215 216
        ctx, &x, mean, /*axis*/ 0, SubAndSquareFunctor<T>(), &out);
    row_mean(dev_ctx, out, var);
C
chengduoZH 已提交
217

C
chengduoZH 已提交
218
    // get x_norm
C
chengduoZH 已提交
219
    ElementwiseComputeEx<SubFunctor<T>, DeviceContext, T>(
C
chengduoZH 已提交
220
        ctx, &x, mean, /*axis*/ 0, SubFunctor<T>(), &out);
C
chengduoZH 已提交
221
    ElementwiseComputeEx<DivAndSqrtFunctor<T>, DeviceContext, T>(
C
chengduoZH 已提交
222 223
        ctx, &out, var, /*axis*/ 0,
        DivAndSqrtFunctor<T>(static_cast<T>(epsilon)), &out);
C
chengduoZH 已提交
224 225 226

    if (scale) {
      ElementwiseComputeEx<MulFunctor<T>, DeviceContext, T>(
C
chengduoZH 已提交
227
          ctx, &out, scale, /*axis*/ 1, MulFunctor<T>(), &out);
C
chengduoZH 已提交
228 229 230
    }
    if (bias) {
      ElementwiseComputeEx<AddFunctor<T>, DeviceContext, T>(
C
chengduoZH 已提交
231
          ctx, &out, bias, /*axis*/ 1, AddFunctor<T>(), &out);
C
chengduoZH 已提交
232
    }
233
#else
234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255
    PADDLE_ENFORCE_EQ(mean->numel(), left,
                      platform::errors::InvalidArgument(
                          "mean's length (%d) is not equal with expected (%d).",
                          mean->numel(), left));
    PADDLE_ENFORCE_EQ(var->numel(), left,
                      platform::errors::InvalidArgument(
                          "var's length (%d) is not equal with expected (%d).",
                          var->numel(), left));
    if (scale) {
      PADDLE_ENFORCE_EQ(
          scale->numel(), right,
          platform::errors::InvalidArgument(
              "scale's length (%d) is not equal with expected (%d).",
              scale->numel(), right));
    }
    if (bias) {
      PADDLE_ENFORCE_EQ(
          bias->numel(), right,
          platform::errors::InvalidArgument(
              "bias's length (%d) is not equal with expected (%d).",
              bias->numel(), right));
    }
256

257 258 259
    auto ker =
        jit::KernelFuncs<jit::LayerNormTuple<T>, platform::CPUPlace>::Cache()
            .At(right);
260
    ker(x.data<T>(), out.data<T>(), mean->data<T>(), var->data<T>(),
261 262
        scale ? scale->data<T>() : nullptr, bias ? bias->data<T>() : nullptr,
        static_cast<int>(left), static_cast<const float>(epsilon), right);
263
#endif
C
chengduoZH 已提交
264
  }
C
chengduoZH 已提交
265 266 267 268 269
};

template <typename DeviceContext, typename T>
class LayerNormGradKernel : public framework::OpKernel<T> {
 public:
X
Xin Pan 已提交
270
  void Compute(const framework::ExecutionContext& ctx) const override {
C
chengduoZH 已提交
271 272
    const float epsilon = ctx.Attr<float>("epsilon");
    auto x = *ctx.Input<Tensor>("X");
X
Xin Pan 已提交
273 274 275
    auto* mean = ctx.Input<Tensor>("Mean");
    auto* var = ctx.Input<Tensor>("Variance");
    auto* scale = ctx.Input<Tensor>("Scale");
C
chengduoZH 已提交
276 277 278 279
    auto d_y = *ctx.Input<Tensor>(framework::GradVarName("Y"));
    const auto begin_norm_axis = ctx.Attr<int>("begin_norm_axis");

    // init output
X
Xin Pan 已提交
280 281 282
    auto* d_x = ctx.Output<Tensor>(framework::GradVarName("X"));
    auto* d_scale = ctx.Output<Tensor>(framework::GradVarName("Scale"));
    auto* d_bias = ctx.Output<Tensor>(framework::GradVarName("Bias"));
C
chengduoZH 已提交
283

X
Xin Pan 已提交
284
    const auto& x_dims = x.dims();
C
chengduoZH 已提交
285 286 287 288 289 290
    auto matrix_dim = framework::flatten_to_2d(x_dims, begin_norm_axis);
    int left = static_cast<int>(matrix_dim[0]);
    int right = static_cast<int>(matrix_dim[1]);
    framework::DDim matrix_shape({left, right});

    d_y.Resize(matrix_shape);
X
Xin Pan 已提交
291 292 293
    auto& dev_ctx = ctx.template device_context<DeviceContext>();
    ColwiseSum2D<DeviceContext, T> colwise_sum(left, right,
                                               ctx.device_context());
C
chengduoZH 已提交
294 295 296 297 298 299 300

    Tensor temp;
    Tensor temp_norm;
    if (d_scale || d_x) {
      x.Resize(matrix_shape);
      temp.mutable_data<T>(matrix_shape, ctx.GetPlace());

S
sneaxiy 已提交
301 302 303 304 305 306 307
      temp_norm.mutable_data<T>(matrix_shape, ctx.GetPlace());
      // get x_norm
      ElementwiseComputeEx<SubFunctor<T>, DeviceContext, T>(
          ctx, &x, mean, /*axis*/ 0, SubFunctor<T>(), &temp_norm);
      ElementwiseComputeEx<DivAndSqrtFunctor<T>, DeviceContext, T>(
          ctx, &temp_norm, var, /*axis*/ 0,
          DivAndSqrtFunctor<T>(static_cast<T>(epsilon)), &temp_norm);
C
chengduoZH 已提交
308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323
    }

    if (d_bias) {
      d_bias->mutable_data<T>(ctx.GetPlace());
      colwise_sum(dev_ctx, d_y, d_bias);
    }
    if (d_scale) {
      d_scale->mutable_data<T>(ctx.GetPlace());
      ElementwiseComputeEx<MulFunctor<T>, DeviceContext, T>(
          ctx, &temp_norm, &d_y, /*axis*/ 0, MulFunctor<T>(), &temp);
      colwise_sum(dev_ctx, temp, d_scale);
    }

    if (d_x) {
      framework::DDim vec_shape({left});
      d_x->mutable_data<T>(ctx.GetPlace());
C
chengduoZH 已提交
324
      auto dx_dim = d_x->dims();
C
chengduoZH 已提交
325 326 327
      Tensor temp_vec;
      temp_vec.mutable_data<T>(vec_shape, ctx.GetPlace());

X
Xin Pan 已提交
328 329
      RowwiseMean2D<DeviceContext, T> row_mean(left, right,
                                               ctx.device_context());
C
chengduoZH 已提交
330 331 332 333

      if (d_scale) {
        // dy_dx
        ElementwiseComputeEx<MulFunctor<T>, DeviceContext, T>(
C
chengduoZH 已提交
334
            ctx, &d_y, scale, /*axis*/ 1, MulFunctor<T>(), &temp);
Y
Yi Wang 已提交
335
        framework::TensorCopy(temp, ctx.GetPlace(), ctx.device_context(), d_x);
C
chengduoZH 已提交
336 337 338 339 340 341 342 343 344 345 346

        // dy_dmean_dx
        row_mean(dev_ctx, temp, &temp_vec);
        ElementwiseComputeEx<SubFunctor<T>, DeviceContext, T>(
            ctx, d_x, &temp_vec, /*axis*/ 0, SubFunctor<T>(), d_x);

        // dy_var_dx
        ElementwiseComputeEx<MulFunctor<T>, DeviceContext, T>(
            ctx, &temp, &temp_norm, /*axis*/ 0, MulFunctor<T>(), &temp);
      } else {
        // dy_dx
Y
Yi Wang 已提交
347
        framework::TensorCopy(d_y, ctx.GetPlace(), ctx.device_context(), d_x);
C
chengduoZH 已提交
348 349 350 351 352 353 354 355 356 357 358 359 360

        // dy_dmean_dx
        row_mean(dev_ctx, d_y, &temp_vec);
        ElementwiseComputeEx<SubFunctor<T>, DeviceContext, T>(
            ctx, d_x, &temp_vec, /*axis*/ 0, SubFunctor<T>(), d_x);

        // dy_var_dx
        ElementwiseComputeEx<MulFunctor<T>, DeviceContext, T>(
            ctx, &d_y, &temp_norm, /*axis*/ 0, MulFunctor<T>(), &temp);
      }
      // dy_var_dx
      row_mean(dev_ctx, temp, &temp_vec);
      ElementwiseComputeEx<MulFunctor<T>, DeviceContext, T>(
C
chengduoZH 已提交
361
          ctx, &temp_norm, &temp_vec, /*axis*/ 0, MulFunctor<T>(), &temp);
C
chengduoZH 已提交
362
      ElementwiseComputeEx<SubFunctor<T>, DeviceContext, T>(
C
chengduoZH 已提交
363
          ctx, d_x, &temp, /*axis*/ 0, SubFunctor<T>(), d_x);
C
chengduoZH 已提交
364 365

      ElementwiseComputeEx<DivAndSqrtFunctor<T>, DeviceContext, T>(
C
chengduoZH 已提交
366
          ctx, d_x, var, /*axis*/ 0,
C
chengduoZH 已提交
367
          DivAndSqrtFunctor<T>(static_cast<T>(epsilon)), d_x);
C
chengduoZH 已提交
368
      d_x->Resize(dx_dim);
C
chengduoZH 已提交
369 370
    }
  }
C
chengduoZH 已提交
371 372 373 374
};

}  // namespace operators
}  // namespace paddle