layer_norm_op.h 12.7 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
C
chengduoZH 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once
P
Pei Yang 已提交
16

17
#include <algorithm>
P
Pei Yang 已提交
18
#include <vector>
W
wanghuancoder 已提交
19

Y
Yi Wang 已提交
20 21
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h"
22
#include "paddle/fluid/operators/elementwise/elementwise_op_function.cu.h"
W
Wu Yi 已提交
23
#include "paddle/fluid/operators/elementwise/elementwise_op_function.h"
Y
Yu Yang 已提交
24
#include "paddle/fluid/operators/math/blas.h"
25 26
#if !defined(PADDLE_WITH_CUDA) && !defined(_WIN32) && !defined(__APPLE__) && \
    !defined(__OSX__)
27
#include "paddle/fluid/operators/jit/kernels.h"
28
#endif
Y
Yi Wang 已提交
29
#include "paddle/fluid/operators/math/math_function.h"
C
chengduoZH 已提交
30

W
wanghuancoder 已提交
31 32 33 34 35 36 37 38
namespace paddle {
namespace platform {
class CPUDeviceContext;
class CUDADeviceContext;
class DeviceContext;
}  // namespace platform
}  // namespace paddle

C
chengduoZH 已提交
39 40 41
namespace paddle {
namespace operators {

X
Xin Pan 已提交
42 43 44 45 46 47 48 49 50 51 52 53
// Wrap RowwiseMean and ColwiseMean.
// Reuse the cpu codes and replace the gpu codes with cublas_gemv, which is
// significantly faster. Unlike the RowwiseMean and ColwiseMean, the
// implementation only considers 2D.
template <typename DeviceContext, typename T>
struct RowwiseMean2D {
  RowwiseMean2D(int left, int right, const platform::DeviceContext& dev_ctx);

  void operator()(const platform::DeviceContext& context,
                  const framework::Tensor& input, framework::Tensor* vec);
};

X
Xin Pan 已提交
54
#ifdef PADDLE_WITH_CUDA
X
Xin Pan 已提交
55 56 57 58 59 60 61 62 63 64 65
template <typename T>
class RowwiseMean2D<platform::CUDADeviceContext, T> {
 public:
  RowwiseMean2D(int left, int right, const platform::DeviceContext& dev_ctx)
      : left_(left), right_(right) {
    framework::DDim ones_dim({right_});
    divisor_.mutable_data<T>(ones_dim, dev_ctx.GetPlace());
    math::set_constant(dev_ctx, &divisor_, 1.0 / right);
  }
  void operator()(const platform::CUDADeviceContext& context,
                  const framework::Tensor& input, framework::Tensor* out) {
Y
Yu Yang 已提交
66 67 68
    math::GetBlas<platform::CUDADeviceContext, T>(context).GEMV(
        false, left_, right_, 1., input.data<T>(), divisor_.data<T>(), 0.,
        out->data<T>());
X
Xin Pan 已提交
69 70 71 72 73 74 75
  }

 private:
  int left_;
  int right_;
  framework::Tensor divisor_;
};
X
Xin Pan 已提交
76
#endif
X
Xin Pan 已提交
77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99

template <typename T>
class RowwiseMean2D<platform::CPUDeviceContext, T> {
 public:
  RowwiseMean2D(int left, int right, const platform::DeviceContext& dev_ctx) {}

  void operator()(const platform::CPUDeviceContext& context,
                  const framework::Tensor& input, framework::Tensor* out) {
    row_mean_(context, input, out);
  }

 private:
  math::RowwiseMean<platform::CPUDeviceContext, T> row_mean_;
};

template <typename DeviceContext, typename T>
struct ColwiseSum2D {
  ColwiseSum2D(int left, int right, const platform::DeviceContext& dev_ctx);

  void operator()(const platform::DeviceContext& context,
                  const framework::Tensor& input, framework::Tensor* vec);
};

X
Xin Pan 已提交
100
#ifdef PADDLE_WITH_CUDA
X
Xin Pan 已提交
101 102 103 104 105 106 107 108 109 110 111 112
template <typename T>
class ColwiseSum2D<platform::CUDADeviceContext, T> {
 public:
  ColwiseSum2D(int left, int right, const platform::DeviceContext& dev_ctx)
      : left_(left), right_(right) {
    framework::DDim ones_dim({left_});
    divisor_.mutable_data<T>(ones_dim, dev_ctx.GetPlace());
    math::set_constant(dev_ctx, &divisor_, 1.0);
  }

  void operator()(const platform::CUDADeviceContext& context,
                  const framework::Tensor& input, framework::Tensor* out) {
Y
Yu Yang 已提交
113 114 115
    math::GetBlas<platform::CUDADeviceContext, T>(context).GEMV(
        true, left_, right_, 1., input.data<T>(), divisor_.data<T>(), 0.,
        out->data<T>());
X
Xin Pan 已提交
116 117 118 119 120 121 122
  }

 private:
  int left_;
  int right_;
  framework::Tensor divisor_;
};
X
Xin Pan 已提交
123
#endif
X
Xin Pan 已提交
124 125 126 127 128 129 130 131 132 133 134 135 136 137 138

template <typename T>
class ColwiseSum2D<platform::CPUDeviceContext, T> {
 public:
  ColwiseSum2D(int left, int right, const platform::DeviceContext& dev_ctx) {}

  void operator()(const platform::CPUDeviceContext& context,
                  const framework::Tensor& input, framework::Tensor* out) {
    col_wise_(context, input, out);
  }

 private:
  math::ColwiseSum<platform::CPUDeviceContext, T> col_wise_;
};

C
chengduoZH 已提交
139 140 141 142 143 144 145 146 147
template <typename T>
struct SubAndSquareFunctor {
  inline HOSTDEVICE T operator()(T a, T b) const { return (a - b) * (a - b); }
};

template <typename T>
struct DivAndSqrtFunctor {
  explicit DivAndSqrtFunctor(T epsilon) { epsilon_ = epsilon; }
  inline HOSTDEVICE T operator()(T a, T b) const {
C
chengduoZH 已提交
148
    return a / (sqrt(b + epsilon_));
C
chengduoZH 已提交
149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165
  }

 private:
  T epsilon_;
};

template <typename T>
struct MulInvVarFunctor {
  inline HOSTDEVICE T operator()(T a, T b) const {
    return a * std::sqrt(1.0 / b);
  }
};

using Tensor = framework::Tensor;
using LoDTensor = framework::LoDTensor;
using DataLayout = framework::DataLayout;

P
Pei Yang 已提交
166 167 168 169 170 171 172 173 174 175 176
#ifdef PADDLE_WITH_CUDA
template <typename T>
class LayerNormDirectCUDAFunctor {
 public:
  void operator()(cudaStream_t stream, const T* input,
                  std::vector<int> input_shape, const T* bias, const T* scale,
                  T* output, T* mean, T* variance, int begin_norm_axis,
                  float eps);
};
#endif

C
chengduoZH 已提交
177 178 179
template <typename DeviceContext, typename T>
class LayerNormKernel : public framework::OpKernel<T> {
 public:
X
Xin Pan 已提交
180
  void Compute(const framework::ExecutionContext& ctx) const override {
C
chengduoZH 已提交
181
    const float epsilon = ctx.Attr<float>("epsilon");
X
Xin Pan 已提交
182 183
    auto* scale = ctx.Input<Tensor>("Scale");
    auto* bias = ctx.Input<Tensor>("Bias");
C
chengduoZH 已提交
184 185
    auto x = *ctx.Input<Tensor>("X");

X
Xin Pan 已提交
186 187 188
    auto* y = ctx.Output<Tensor>("Y");
    auto* mean = ctx.Output<Tensor>("Mean");
    auto* var = ctx.Output<Tensor>("Variance");
C
chengduoZH 已提交
189 190
    const auto begin_norm_axis = ctx.Attr<int>("begin_norm_axis");

C
chengduoZH 已提交
191
    const auto x_dims = x.dims();
C
chengduoZH 已提交
192 193 194 195 196 197 198 199 200 201 202

    y->mutable_data<T>(ctx.GetPlace());
    mean->mutable_data<T>(ctx.GetPlace());
    var->mutable_data<T>(ctx.GetPlace());

    auto matrix_dim = framework::flatten_to_2d(x_dims, begin_norm_axis);
    int left = static_cast<int>(matrix_dim[0]);
    int right = static_cast<int>(matrix_dim[1]);
    framework::DDim matrix_shape({left, right});

    x.Resize(matrix_shape);
C
chengduoZH 已提交
203 204 205
    Tensor out;
    out.ShareDataWith(*y);
    out.Resize(matrix_shape);
C
chengduoZH 已提交
206

207 208
#if defined(PADDLE_WITH_CUDA) || defined(_WIN32) || defined(__APPLE__) || \
    defined(__OSX__)
X
Xin Pan 已提交
209 210
    auto& dev_ctx = ctx.template device_context<DeviceContext>();
    RowwiseMean2D<DeviceContext, T> row_mean(left, right, ctx.device_context());
C
chengduoZH 已提交
211

C
chengduoZH 已提交
212
    // get mean
C
chengduoZH 已提交
213 214
    row_mean(dev_ctx, x, mean);

C
chengduoZH 已提交
215
    // get variance
C
chengduoZH 已提交
216
    ElementwiseComputeEx<SubAndSquareFunctor<T>, DeviceContext, T>(
C
chengduoZH 已提交
217 218
        ctx, &x, mean, /*axis*/ 0, SubAndSquareFunctor<T>(), &out);
    row_mean(dev_ctx, out, var);
C
chengduoZH 已提交
219

C
chengduoZH 已提交
220
    // get x_norm
C
chengduoZH 已提交
221
    ElementwiseComputeEx<SubFunctor<T>, DeviceContext, T>(
C
chengduoZH 已提交
222
        ctx, &x, mean, /*axis*/ 0, SubFunctor<T>(), &out);
C
chengduoZH 已提交
223
    ElementwiseComputeEx<DivAndSqrtFunctor<T>, DeviceContext, T>(
C
chengduoZH 已提交
224 225
        ctx, &out, var, /*axis*/ 0,
        DivAndSqrtFunctor<T>(static_cast<T>(epsilon)), &out);
C
chengduoZH 已提交
226 227 228

    if (scale) {
      ElementwiseComputeEx<MulFunctor<T>, DeviceContext, T>(
C
chengduoZH 已提交
229
          ctx, &out, scale, /*axis*/ 1, MulFunctor<T>(), &out);
C
chengduoZH 已提交
230 231 232
    }
    if (bias) {
      ElementwiseComputeEx<AddFunctor<T>, DeviceContext, T>(
C
chengduoZH 已提交
233
          ctx, &out, bias, /*axis*/ 1, AddFunctor<T>(), &out);
C
chengduoZH 已提交
234
    }
235
#else
236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257
    PADDLE_ENFORCE_EQ(mean->numel(), left,
                      platform::errors::InvalidArgument(
                          "mean's length (%d) is not equal with expected (%d).",
                          mean->numel(), left));
    PADDLE_ENFORCE_EQ(var->numel(), left,
                      platform::errors::InvalidArgument(
                          "var's length (%d) is not equal with expected (%d).",
                          var->numel(), left));
    if (scale) {
      PADDLE_ENFORCE_EQ(
          scale->numel(), right,
          platform::errors::InvalidArgument(
              "scale's length (%d) is not equal with expected (%d).",
              scale->numel(), right));
    }
    if (bias) {
      PADDLE_ENFORCE_EQ(
          bias->numel(), right,
          platform::errors::InvalidArgument(
              "bias's length (%d) is not equal with expected (%d).",
              bias->numel(), right));
    }
258

259 260 261
    auto ker =
        jit::KernelFuncs<jit::LayerNormTuple<T>, platform::CPUPlace>::Cache()
            .At(right);
262
    ker(x.data<T>(), out.data<T>(), mean->data<T>(), var->data<T>(),
263 264
        scale ? scale->data<T>() : nullptr, bias ? bias->data<T>() : nullptr,
        static_cast<int>(left), static_cast<const float>(epsilon), right);
265
#endif
C
chengduoZH 已提交
266
  }
C
chengduoZH 已提交
267 268 269 270 271
};

template <typename DeviceContext, typename T>
class LayerNormGradKernel : public framework::OpKernel<T> {
 public:
X
Xin Pan 已提交
272
  void Compute(const framework::ExecutionContext& ctx) const override {
C
chengduoZH 已提交
273 274
    const float epsilon = ctx.Attr<float>("epsilon");
    auto x = *ctx.Input<Tensor>("X");
X
Xin Pan 已提交
275 276 277
    auto* mean = ctx.Input<Tensor>("Mean");
    auto* var = ctx.Input<Tensor>("Variance");
    auto* scale = ctx.Input<Tensor>("Scale");
C
chengduoZH 已提交
278 279 280 281
    auto d_y = *ctx.Input<Tensor>(framework::GradVarName("Y"));
    const auto begin_norm_axis = ctx.Attr<int>("begin_norm_axis");

    // init output
X
Xin Pan 已提交
282 283 284
    auto* d_x = ctx.Output<Tensor>(framework::GradVarName("X"));
    auto* d_scale = ctx.Output<Tensor>(framework::GradVarName("Scale"));
    auto* d_bias = ctx.Output<Tensor>(framework::GradVarName("Bias"));
C
chengduoZH 已提交
285

X
Xin Pan 已提交
286
    const auto& x_dims = x.dims();
C
chengduoZH 已提交
287 288 289 290 291 292
    auto matrix_dim = framework::flatten_to_2d(x_dims, begin_norm_axis);
    int left = static_cast<int>(matrix_dim[0]);
    int right = static_cast<int>(matrix_dim[1]);
    framework::DDim matrix_shape({left, right});

    d_y.Resize(matrix_shape);
X
Xin Pan 已提交
293 294 295
    auto& dev_ctx = ctx.template device_context<DeviceContext>();
    ColwiseSum2D<DeviceContext, T> colwise_sum(left, right,
                                               ctx.device_context());
C
chengduoZH 已提交
296 297 298 299 300 301 302

    Tensor temp;
    Tensor temp_norm;
    if (d_scale || d_x) {
      x.Resize(matrix_shape);
      temp.mutable_data<T>(matrix_shape, ctx.GetPlace());

S
sneaxiy 已提交
303 304 305 306 307 308 309
      temp_norm.mutable_data<T>(matrix_shape, ctx.GetPlace());
      // get x_norm
      ElementwiseComputeEx<SubFunctor<T>, DeviceContext, T>(
          ctx, &x, mean, /*axis*/ 0, SubFunctor<T>(), &temp_norm);
      ElementwiseComputeEx<DivAndSqrtFunctor<T>, DeviceContext, T>(
          ctx, &temp_norm, var, /*axis*/ 0,
          DivAndSqrtFunctor<T>(static_cast<T>(epsilon)), &temp_norm);
C
chengduoZH 已提交
310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325
    }

    if (d_bias) {
      d_bias->mutable_data<T>(ctx.GetPlace());
      colwise_sum(dev_ctx, d_y, d_bias);
    }
    if (d_scale) {
      d_scale->mutable_data<T>(ctx.GetPlace());
      ElementwiseComputeEx<MulFunctor<T>, DeviceContext, T>(
          ctx, &temp_norm, &d_y, /*axis*/ 0, MulFunctor<T>(), &temp);
      colwise_sum(dev_ctx, temp, d_scale);
    }

    if (d_x) {
      framework::DDim vec_shape({left});
      d_x->mutable_data<T>(ctx.GetPlace());
C
chengduoZH 已提交
326
      auto dx_dim = d_x->dims();
C
chengduoZH 已提交
327 328 329
      Tensor temp_vec;
      temp_vec.mutable_data<T>(vec_shape, ctx.GetPlace());

X
Xin Pan 已提交
330 331
      RowwiseMean2D<DeviceContext, T> row_mean(left, right,
                                               ctx.device_context());
C
chengduoZH 已提交
332 333 334 335

      if (d_scale) {
        // dy_dx
        ElementwiseComputeEx<MulFunctor<T>, DeviceContext, T>(
C
chengduoZH 已提交
336
            ctx, &d_y, scale, /*axis*/ 1, MulFunctor<T>(), &temp);
Y
Yi Wang 已提交
337
        framework::TensorCopy(temp, ctx.GetPlace(), ctx.device_context(), d_x);
C
chengduoZH 已提交
338 339 340 341 342 343 344 345 346 347 348

        // dy_dmean_dx
        row_mean(dev_ctx, temp, &temp_vec);
        ElementwiseComputeEx<SubFunctor<T>, DeviceContext, T>(
            ctx, d_x, &temp_vec, /*axis*/ 0, SubFunctor<T>(), d_x);

        // dy_var_dx
        ElementwiseComputeEx<MulFunctor<T>, DeviceContext, T>(
            ctx, &temp, &temp_norm, /*axis*/ 0, MulFunctor<T>(), &temp);
      } else {
        // dy_dx
Y
Yi Wang 已提交
349
        framework::TensorCopy(d_y, ctx.GetPlace(), ctx.device_context(), d_x);
C
chengduoZH 已提交
350 351 352 353 354 355 356 357 358 359 360 361 362

        // dy_dmean_dx
        row_mean(dev_ctx, d_y, &temp_vec);
        ElementwiseComputeEx<SubFunctor<T>, DeviceContext, T>(
            ctx, d_x, &temp_vec, /*axis*/ 0, SubFunctor<T>(), d_x);

        // dy_var_dx
        ElementwiseComputeEx<MulFunctor<T>, DeviceContext, T>(
            ctx, &d_y, &temp_norm, /*axis*/ 0, MulFunctor<T>(), &temp);
      }
      // dy_var_dx
      row_mean(dev_ctx, temp, &temp_vec);
      ElementwiseComputeEx<MulFunctor<T>, DeviceContext, T>(
C
chengduoZH 已提交
363
          ctx, &temp_norm, &temp_vec, /*axis*/ 0, MulFunctor<T>(), &temp);
C
chengduoZH 已提交
364
      ElementwiseComputeEx<SubFunctor<T>, DeviceContext, T>(
C
chengduoZH 已提交
365
          ctx, d_x, &temp, /*axis*/ 0, SubFunctor<T>(), d_x);
C
chengduoZH 已提交
366 367

      ElementwiseComputeEx<DivAndSqrtFunctor<T>, DeviceContext, T>(
C
chengduoZH 已提交
368
          ctx, d_x, var, /*axis*/ 0,
C
chengduoZH 已提交
369
          DivAndSqrtFunctor<T>(static_cast<T>(epsilon)), d_x);
C
chengduoZH 已提交
370
      d_x->Resize(dx_dim);
C
chengduoZH 已提交
371 372
    }
  }
C
chengduoZH 已提交
373 374 375 376
};

}  // namespace operators
}  // namespace paddle