op_test.py 64.0 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

B
baojun 已提交
17
import os
18
import unittest
19
import warnings
20
import numpy as np
21
import random
M
minqiyang 已提交
22
import six
23
import time
24
import itertools
Y
Yu Yang 已提交
25
import collections
M
minqiyang 已提交
26
from collections import defaultdict
27 28 29

import paddle.fluid as fluid
import paddle.fluid.core as core
30 31 32
from paddle.fluid.backward import append_backward
from paddle.fluid.op import Operator
from paddle.fluid.executor import Executor
33
from paddle.fluid.framework import Program, OpProtoHolder, Variable
34
from testsuite import create_op, set_input, append_input_output, append_loss_ops
35
from paddle.fluid import unique_name
36
from white_list import op_accuracy_white_list, check_shape_white_list, compile_vs_runtime_white_list, no_check_set_white_list
37
from white_list import op_threshold_white_list
38 39


40 41 42 43 44 45 46 47
def _set_use_system_allocator(value=None):
    USE_SYSTEM_ALLOCATOR_FLAG = "FLAGS_use_system_allocator"
    old_value = core.globals()[USE_SYSTEM_ALLOCATOR_FLAG]
    value = old_value if value is None else value
    core.globals()[USE_SYSTEM_ALLOCATOR_FLAG] = value
    return old_value


48 49 50 51
def randomize_probability(batch_size, class_num, dtype='float32'):
    prob = np.random.uniform(
        0.1, 1.0, size=(batch_size, class_num)).astype(dtype)
    prob_sum = prob.sum(axis=1)
M
minqiyang 已提交
52
    for i in six.moves.xrange(len(prob)):
53 54 55 56
        prob[i] /= prob_sum[i]
    return prob


57 58
def get_numeric_gradient(place,
                         scope,
59 60 61
                         op,
                         inputs,
                         input_to_check,
Y
Yancey 已提交
62
                         output_names,
63
                         delta=0.005,
C
chengduo 已提交
64
                         in_place=False):
Y
Yu Yang 已提交
65
    # FIXME: change this method by compile time concepts
66
    set_input(scope, op, inputs, place)
67 68

    def product(dim):
M
minqiyang 已提交
69
        return six.moves.reduce(lambda a, b: a * b, dim, 1)
70 71

    tensor_to_check = scope.find_var(input_to_check).get_tensor()
Y
yuyang18 已提交
72
    tensor_size = product(tensor_to_check.shape())
73 74 75 76
    if not hasattr(get_numeric_gradient, 'check_shape_time'):
        get_numeric_gradient.check_shape_time = 0
    if tensor_size >= 100:
        get_numeric_gradient.check_shape_time += 1
Y
yuyang18 已提交
77
    tensor_to_check_dtype = tensor_to_check._dtype()
78
    if tensor_to_check_dtype == core.VarDesc.VarType.FP32:
79
        tensor_to_check_dtype = np.float32
80
    elif tensor_to_check_dtype == core.VarDesc.VarType.FP64:
81
        tensor_to_check_dtype = np.float64
D
dzhwinter 已提交
82 83 84 85
    elif tensor_to_check_dtype == core.VarDesc.VarType.FP16:
        tensor_to_check_dtype = np.float16
        # set delta as np.float16, will automatic convert to float32, float64
        delta = np.array(delta).astype(np.float16)
86 87 88 89
    else:
        raise ValueError("Not supported data type " + str(
            tensor_to_check_dtype))

C
chengduo 已提交
90 91 92 93 94 95 96 97 98
    def get_output():
        sum = []
        op.run(scope, place)
        for output_name in output_names:
            sum.append(
                np.array(scope.find_var(output_name).get_tensor()).astype(
                    tensor_to_check_dtype).mean())
        return tensor_to_check_dtype(np.array(sum).sum() / len(output_names))

99 100 101
    gradient_flat = np.zeros(shape=(tensor_size, ), dtype=tensor_to_check_dtype)

    def __get_elem__(tensor, i):
D
dzhwinter 已提交
102 103 104 105 106
        if tensor_to_check_dtype == np.float16:
            numpy_tensor = np.array(tensor).astype(np.float16)
            numpy_tensor = numpy_tensor.flatten()
            return numpy_tensor[i]
        elif tensor_to_check_dtype == np.float32:
Y
yuyang18 已提交
107
            return tensor._get_float_element(i)
108
        else:
Y
yuyang18 已提交
109
            return tensor._get_double_element(i)
110 111

    def __set_elem__(tensor, i, e):
D
dzhwinter 已提交
112 113 114 115 116
        if tensor_to_check_dtype == np.float16:
            numpy_tensor = np.array(tensor).astype(np.float16)
            shape = numpy_tensor.shape
            numpy_tensor = numpy_tensor.flatten()
            numpy_tensor[i] = e
117
            numpy_tensor = numpy_tensor.reshape(shape)
D
dzhwinter 已提交
118 119
            tensor.set(numpy_tensor, place)
        elif tensor_to_check_dtype == np.float32:
Y
yuyang18 已提交
120
            tensor._set_float_element(i, e)
121
        else:
Y
yuyang18 已提交
122
            tensor._set_double_element(i, e)
123

124 125
    # we only compute gradient of one element each time.
    # we use a for loop to compute the gradient of every element.
M
minqiyang 已提交
126
    for i in six.moves.xrange(tensor_size):
127
        if in_place:
128
            set_input(scope, op, inputs, place)
129 130

        # get one input element throw it's index i.
131
        origin = __get_elem__(tensor_to_check, i)
132 133
        # add delta to it, run op and then get the sum of the result tensor.
        x_pos = origin + delta
134
        __set_elem__(tensor_to_check, i, x_pos)
135 136 137
        y_pos = get_output()

        if in_place:
138
            set_input(scope, op, inputs, place)
139 140

        x_neg = origin - delta
141
        __set_elem__(tensor_to_check, i, x_neg)
142 143
        y_neg = get_output()

144
        __set_elem__(tensor_to_check, i, origin)
145 146
        gradient_flat[i] = (y_pos - y_neg) / delta / 2

Y
yuyang18 已提交
147
    return gradient_flat.reshape(tensor_to_check.shape())
148 149


150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173
def skip_check_grad_ci(reason=None):
    """Decorator to skip check_grad CI.
       
       Check_grad is required for Op test cases. However, there are some special
       cases that do not need to do check_grad. This decorator is used to skip the 
       check_grad of the above cases.
       
       Note: the execution of unit test will not be skipped. It just avoids check_grad 
       checking in tearDownClass method by setting a `no_need_check_grad` flag.

       Example:
           @skip_check_grad_ci(reason="For inference, check_grad is not required.")
           class TestInference(OpTest):
    """
    if not isinstance(reason, str):
        raise AssertionError("The reason for skipping check_grad is required.")

    def wrapper(cls):
        cls.no_need_check_grad = True
        return cls

    return wrapper


174
class OpTest(unittest.TestCase):
175 176 177 178 179
    @classmethod
    def setUpClass(cls):
        '''Fix random seeds to remove randomness from tests'''
        cls._np_rand_state = np.random.get_state()
        cls._py_rand_state = random.getstate()
180
        cls.call_once = False
181
        cls.dtype = None
182
        cls.outputs = {}
183 184 185 186

        np.random.seed(123)
        random.seed(124)

187 188
        cls._use_system_allocator = _set_use_system_allocator(True)

189 190
    @classmethod
    def tearDownClass(cls):
Y
yuyang18 已提交
191
        """Restore random seeds"""
192 193 194
        np.random.set_state(cls._np_rand_state)
        random.setstate(cls._py_rand_state)

195 196
        _set_use_system_allocator(cls._use_system_allocator)

197 198 199 200 201 202 203 204 205 206 207 208 209
        def is_empty_grad_op(op_type):
            all_op_kernels = core._get_all_register_op_kernels()
            grad_op = op_type + '_grad'
            if grad_op in all_op_kernels.keys():
                if hasattr(cls, "use_mkldnn") and cls.use_mkldnn == True:
                    grad_op_kernels = all_op_kernels[grad_op]
                    for grad_op_kernel in grad_op_kernels:
                        if 'MKLDNN' in grad_op_kernel:
                            return False
                else:
                    return False
            return True

210 211
        if not hasattr(cls, "op_type"):
            raise AssertionError(
212 213
                "This test do not have op_type in class attrs, "
                "please set self.__class__.op_type=the_real_op_type manually.")
214

J
juncaipeng 已提交
215 216
        # case in NO_FP64_CHECK_GRAD_CASES and op in NO_FP64_CHECK_GRAD_OP_LIST should be fixed
        if not hasattr(cls, "no_need_check_grad") \
217
            and not is_empty_grad_op(cls.op_type):
J
juncaipeng 已提交
218
            if cls.dtype is None or \
219 220
                (cls.dtype == np.float16 \
                    and cls.op_type not in op_accuracy_white_list.NO_FP16_CHECK_GRAD_OP_LIST \
J
juncaipeng 已提交
221 222 223 224
                    and not hasattr(cls, "exist_check_grad")):
                raise AssertionError("This test of %s op needs check_grad." %
                                     cls.op_type)

225
            # check for op test with fp64 precision, but not check mkldnn op test for now
J
juncaipeng 已提交
226 227
            if cls.dtype in [np.float32, np.float64] \
                and cls.op_type not in op_accuracy_white_list.NO_FP64_CHECK_GRAD_OP_LIST \
228 229
                and not hasattr(cls, 'exist_fp64_check_grad') \
                and (not hasattr(cls, "use_mkldnn") or cls.use_mkldnn == False):
J
juncaipeng 已提交
230 231 232 233 234 235 236 237
                raise AssertionError(
                    "This test of %s op needs check_grad with fp64 precision." %
                    cls.op_type)

        if hasattr(get_numeric_gradient, 'check_shape_time') \
            and get_numeric_gradient.check_shape_time == 0 \
            and OpTest.op_type not in check_shape_white_list.NOT_CHECK_OP_LIST \
            and OpTest.op_type not in check_shape_white_list.NEED_TO_FIX_OP_LIST:
238 239 240 241
            raise AssertionError(
                "At least one input's shape should be large than or equal to 100 for "
                + OpTest.op_type + " Op.")

242 243 244 245 246 247
    def try_call_once(self, data_type):
        if not self.call_once:
            self.call_once = True
            self.dtype = data_type

    def infer_dtype_from_inputs_outputs(self, inputs, outputs):
J
juncaipeng 已提交
248 249 250 251
        def is_np_data(input):
            return isinstance(input, (np.ndarray, np.generic))

        def infer_dtype(numpy_dict, dtype_set):
252 253 254
            assert isinstance(
                numpy_dict,
                dict), "self.inputs, self.outputs must be numpy_dict"
J
juncaipeng 已提交
255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281
            # the inputs are as follows:
            # case 1: inputs = {'X': x}
            # case 2: inputs = {'X': (x, x_lod)}
            # case 3: inputs = {"X": [("x0", x0), ("x1", x1), ("x2", x2)]}
            # case 4: inputs = {'X': [("x1", (x1, [x1_lod1])), ("x2", (x2, [x2_.lod2]))]}
            # TODO(juncaipeng) infer dtype from inputs maybe obtain wrong type.
            for _, var_value in six.iteritems(numpy_dict):
                if is_np_data(var_value):  # case 1
                    dtype_set.add(var_value.dtype)
                elif isinstance(var_value, (list, tuple)):  # case 2, 3, 4
                    for sub_val_value in var_value:
                        if is_np_data(sub_val_value):  # case 2
                            dtype_set.add(sub_val_value.dtype)
                        elif len(sub_val_value) > 1 and is_np_data(
                                sub_val_value[1]):  # case 3
                            dtype_set.add(sub_val_value[1].dtype)
                        elif len(sub_val_value) > 1 and isinstance(sub_val_value[1], (list, tuple)) \
                            and is_np_data(sub_val_value[1][0]): # case 4
                            dtype_set.add(sub_val_value[1][0].dtype)

        # infer dtype from inputs, and dtype means the precision of the test
        # collect dtype of all inputs
        dtype_set = set()
        infer_dtype(inputs, dtype_set)
        dtype_list = [
            np.dtype(np.float64), np.dtype(np.float32), np.dtype(np.float16),
            np.dtype(np.int64), np.dtype(np.int32), np.dtype(np.int16),
282
            np.dtype(np.int8), np.dtype(np.uint8), np.dtype(np.bool)
J
juncaipeng 已提交
283 284 285 286 287 288
        ]
        # check the dtype in dtype_list in order, select the first dtype that in dtype_set
        for dtype in dtype_list:
            if dtype in dtype_set:
                self.dtype = dtype
                break
289 290
        # save dtype in class attr
        self.__class__.dtype = self.dtype
291

Y
Yang Yang(Tony) 已提交
292 293 294 295 296 297
    def feed_var(self, input_vars, place):
        feed_map = {}
        for var_name in input_vars:
            if isinstance(input_vars[var_name], list):
                for name, np_value in self.inputs[var_name]:
                    tensor = core.LoDTensor()
298
                    if isinstance(np_value, tuple):
299
                        tensor.set(np_value[0], place)
300
                        tensor.set_recursive_sequence_lengths(np_value[1])
301
                    else:
302
                        tensor.set(np_value, place)
Y
Yang Yang(Tony) 已提交
303 304 305 306
                    feed_map[name] = tensor
            else:
                tensor = core.LoDTensor()
                if isinstance(self.inputs[var_name], tuple):
307
                    tensor.set(self.inputs[var_name][0], place)
308 309
                    tensor.set_recursive_sequence_lengths(self.inputs[var_name][
                        1])
Y
Yang Yang(Tony) 已提交
310
                else:
311
                    tensor.set(self.inputs[var_name], place)
Y
Yang Yang(Tony) 已提交
312 313 314 315
                feed_map[var_name] = tensor

        return feed_map

316
    def _append_ops(self, block):
J
juncaipeng 已提交
317
        self.__class__.op_type = self.op_type  # for ci check, please not delete it for now
318 319
        if hasattr(self, "use_mkldnn"):
            self.__class__.use_mkldnn = self.use_mkldnn
Y
Yang Yang(Tony) 已提交
320
        op_proto = OpProtoHolder.instance().get_op_proto(self.op_type)
321 322 323 324 325 326
        "infer datatype from inputs and outputs for this test case"
        self.infer_dtype_from_inputs_outputs(self.inputs, self.outputs)
        inputs = append_input_output(block, op_proto, self.inputs, True,
                                     self.dtype)
        outputs = append_input_output(block, op_proto, self.outputs, False,
                                      self.dtype)
P
phlrain 已提交
327 328 329 330 331 332 333 334 335

        if hasattr(self, "cache_name_list"):
            for name in self.cache_name_list:
                inputs[name] = block.create_var(
                    name=name,
                    persistable=True,
                    type=core.VarDesc.VarType.RAW,
                    stop_gradient=True)

Y
Yang Yang(Tony) 已提交
336 337 338 339 340
        op = block.append_op(
            type=self.op_type,
            inputs=inputs,
            outputs=outputs,
            attrs=self.attrs if hasattr(self, "attrs") else dict())
341
        # infer variable type and infer shape in compile-time 
Q
QI JUN 已提交
342 343
        op.desc.infer_var_type(block.desc)
        op.desc.infer_shape(block.desc)
Y
Yang Yang(Tony) 已提交
344

345 346
        return op

347 348
    def _get_io_vars(self, block, numpy_inputs):
        inputs = {}
M
minqiyang 已提交
349
        for name, value in six.iteritems(numpy_inputs):
350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368
            if isinstance(value, list):
                var_list = [
                    block.var(sub_name) for sub_name, sub_value in value
                ]
                inputs[name] = var_list
            else:
                inputs[name] = block.var(name)
        return inputs

    def _get_inputs(self, block):
        return self._get_io_vars(block, self.inputs)

    def _get_outputs(self, block):
        return self._get_io_vars(block, self.outputs)

    def calc_output(self, place):
        outs, _ = self._calc_output(place)
        return outs

M
minqiyang 已提交
369 370 371 372
    def _create_var_from_numpy(self, value):
        if isinstance(value, tuple):
            data = value[0]
            lod = value[1]
L
lujun 已提交
373
            v = fluid.dygraph.base.to_variable(value=data)
374
            v.value().get_tensor().set_recursive_sequence_lengths(lod)
M
minqiyang 已提交
375 376
            return v
        else:
L
lujun 已提交
377
            return fluid.dygraph.base.to_variable(value)
M
minqiyang 已提交
378

379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396
    def get_sequence_batch_size_1_input(self, lod=None, shape=None):
        """Get LoD input data whose batch size is 1.
        All sequence related OP unittests should call this function to contain the case of batch size = 1.
        Args:
            lod (list[list of int], optional): Length-based LoD, length of lod[0] should be 1. Default: [[13]].
            shape (list, optional): Shape of input, shape[0] should be equals to lod[0][0]. Default: [13, 23].
        Returns:
            tuple (ndarray, lod) : LoD input data whose batch size is 1.
        """
        if lod is None:
            lod = [[13]]
        if shape is None:
            shape = [13, 23]
        assert len(lod[0]) == 1
        assert lod[0][0] == shape[0]
        x = np.random.uniform(0.1, 1, shape).astype('float32')
        return (x, lod)

397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432
    def lod_has_single_zero(self, lod):
        for i in range(len(lod) - 2):
            if lod[i] != 0 and lod[i + 1] == 0 and lod[i + 2] != 0:
                return True
        return False

    def lod_has_continuous_zero(self, lod):
        for i in range(len(lod) - 3):
            if lod[i] != 0 and lod[i + 1] == 0 and lod[i + 2] == 0 and lod[
                    i + 3] != 0:
                return True
        return False

    def get_sequence_instance_size_0_input(self, lod=None, shape=None):
        """Get LoD input data whose instance size is 0.
        All sequence related OP unittests should call this function to contain the case of instance size is 0.
        Args:
            lod (list[list of int], optional): Length-based LoD, lod[0]'s size must at least eight, lod[0] must at least two zeros at the beginning and at least two zeros at the end, the middle position of lod[0] contains a single zero and multiple zero. Default: [[0, 0, 4, 0, 3, 0, 0, 5, 0, 0]].
            shape (list, optional): Shape of input, shape[0] should be equals to lod[0][0]. Default: [13, 23].
        Returns:
            tuple (ndarray, lod): LoD input data whose instance size is 0.
        """
        if lod is None:
            lod = [[0, 0, 4, 0, 3, 0, 0, 5, 0, 0]]
        if shape is None:
            shape = [12, 10]
        assert len(lod[0]) >= 8
        assert lod[0][0] == 0 and lod[0][1] == 0 and lod[0][-1] == 0 and lod[0][
            -2] == 0
        assert self.lod_has_single_zero(lod[0]) is True
        assert self.lod_has_continuous_zero(lod[0]) is True
        assert sum(lod[0]) == shape[0]

        x = np.random.uniform(0.1, 1, shape).astype('float32')
        return (x, lod)

433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448
    def append_input_output_for_dygraph(self, op_proto, np_list, is_input,
                                        if_return_inputs_grad_dict, block):
        def create_var(np_value, name, is_input, if_return_inputs_grad_dict):
            np_value_temp = np_value
            has_lod = False
            lod_temp = None
            if isinstance(np_value, tuple):
                np_value_temp = np_value[0]
                has_lod = True
                lod_temp = np_value[1]

            if is_input:
                v = self._create_var_from_numpy(np_value_temp)
                if if_return_inputs_grad_dict:
                    v.stop_gradient = False
                if has_lod:
449
                    v.value().get_tensor().set_recursive_sequence_lengths(
450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510
                        lod_temp)
            else:
                v = block.create_var(
                    name=name,
                    dtype=np_value_temp.dtype,
                    type=core.VarDesc.VarType.LOD_TENSOR,
                    persistable=False,
                    stop_gradient=False)

            return v

        # prepare variable for input or output
        var_dict = defaultdict(list)
        if if_return_inputs_grad_dict:
            inputs_grad_dict = defaultdict()
        proto_list = op_proto.inputs if is_input else op_proto.outputs
        for var_proto in proto_list:
            name = var_proto.name
            if (name not in np_list) and var_proto.dispensable:
                continue
            if name not in np_list:
                assert var_proto.intermediate, "{} not found".format(name)
                v = block.create_var(
                    dtype='float32', type=core.VarDesc.VarType.LOD_TENSOR)
                var_dict[name].append(v)
                if if_return_inputs_grad_dict:
                    inputs_grad_dict[name] = v
                continue
            if var_proto.duplicable:
                assert isinstance(
                    np_list[name],
                    list), "Duplicable {} should be set as list".format(name)
                var_list = []
                slot_name = name
                for (name, np_value) in np_list[name]:
                    v = create_var(np_value, name, is_input,
                                   if_return_inputs_grad_dict)
                    var_list.append(v)
                    if if_return_inputs_grad_dict:
                        inputs_grad_dict[name] = v
                var_dict[slot_name] = var_list
            else:
                nplist_value_temp = None
                name_temp = None
                if isinstance(np_list[name], list):
                    nplist_value_temp = np_list[name][0]
                    name_temp = name
                else:
                    nplist_value_temp = np_list[name]
                    name_temp = unique_name.generate("%s_out" % (name))
                v = create_var(nplist_value_temp, name_temp, is_input,
                               if_return_inputs_grad_dict)
                var_dict[name].append(v)
                if if_return_inputs_grad_dict:
                    inputs_grad_dict[name] = v

        if if_return_inputs_grad_dict:
            return var_dict, inputs_grad_dict
        else:
            return var_dict

L
lujun 已提交
511
    def _calc_dygraph_output(self, place, parallel=False, no_check_set=None):
J
juncaipeng 已提交
512
        self.__class__.op_type = self.op_type  # for ci check, please not delete it for now
L
lujun 已提交
513
        with fluid.dygraph.base.guard(place=place):
M
minqiyang 已提交
514 515
            block = fluid.default_main_program().global_block()

516
            op_proto = OpProtoHolder.instance().get_op_proto(self.op_type)
M
minqiyang 已提交
517

518 519 520
            # prepare input variable
            inputs = self.append_input_output_for_dygraph(op_proto, self.inputs,
                                                          True, False, block)
M
minqiyang 已提交
521 522

            # prepare output variable
523 524 525 526 527 528 529 530 531
            outputs = self.append_input_output_for_dygraph(
                op_proto, self.outputs, False, False, block)

            # prepare attrbutes
            attrs_outputs = {}
            if hasattr(self, "attrs"):
                for attrs_name in self.attrs:
                    if self.attrs[attrs_name] is not None:
                        attrs_outputs[attrs_name] = self.attrs[attrs_name]
M
minqiyang 已提交
532 533 534 535
            block.append_op(
                type=self.op_type,
                inputs=inputs,
                outputs=outputs,
536
                attrs=attrs_outputs if hasattr(self, "attrs") else None)
M
minqiyang 已提交
537
            return outputs
538

539 540 541 542 543 544
    def _calc_output(self,
                     place,
                     parallel=False,
                     no_check_set=None,
                     loss=None,
                     enable_inplace=None,
545
                     for_inplace_test=None):
546 547
        program = Program()
        block = program.global_block()
548
        op = self._append_ops(block)
549 550 551 552 553

        inputs = self._get_inputs(block)
        outputs = self._get_outputs(block)
        feed_map = self.feed_var(inputs, place)

554
        if for_inplace_test:
555 556 557 558
            # Some variables' tensors hold no buffer (tensor's _holder is NULL), like XShape in reshape2 op, 
            # and the shapes of those variables contain 0 (eg. Xshape.shape = [0, 2, 5]). 
            # Set persistable for those variables in order to get them from global_scope for inplace grad test directly other than feed them,
            # since feed op calls check_memory_size() which fails when tensor's holder_ is NULL.
559 560
            for out_name in op.output_arg_names:
                var = block.var(out_name)
561 562
                if 0 in var.shape:
                    var.persistable = True
563
        original_program = program
564 565
        if parallel:
            use_cuda = False
566
            if isinstance(place, fluid.CUDAPlace):
567
                use_cuda = True
568 569 570
            compiled_prog = fluid.CompiledProgram(program).with_data_parallel(
                loss_name=loss.name if loss else None, places=place)
            program = compiled_prog
571 572 573 574
        fetch_list = getattr(self, "fetch_list", [])
        # if the fetch_list is customized by user, we use it directly.
        # if not, fill the fetch_list by the user configured outputs in test.
        if len(fetch_list) == 0:
M
minqiyang 已提交
575
            for var_name, var in six.iteritems(outputs):
576 577
                if no_check_set is not None and var_name in no_check_set:
                    continue
Y
Yang Yang(Tony) 已提交
578 579
                if isinstance(var, list):
                    for v in var:
580
                        fetch_list.append(v.name)
Y
Yang Yang(Tony) 已提交
581
                else:
582
                    fetch_list.append(var.name)
583 584 585 586
        # if the fetch_list still empty, fill the fetch_list by the operator output.
        if len(fetch_list) == 0:
            for out_name, out_dup in Operator.get_op_outputs(self.op_type):
                fetch_list.append(str(out_name))
587 588 589 590 591 592 593 594 595

        if enable_inplace is not None:
            build_strategy = fluid.BuildStrategy()
            build_strategy.enable_inplace = enable_inplace

            compiled_prog = fluid.CompiledProgram(program).with_data_parallel(
                build_strategy=build_strategy, places=place)
            program = compiled_prog

596
        executor = Executor(place)
597 598 599 600
        outs = executor.run(program,
                            feed=feed_map,
                            fetch_list=fetch_list,
                            return_numpy=False)
601 602
        self.op = op
        self.program = original_program
603 604 605 606
        if for_inplace_test:
            return outs, fetch_list, feed_map, original_program, op.desc
        else:
            return outs, fetch_list
Y
Yang Yang(Tony) 已提交
607

608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627
    def _compare_expect_and_actual_outputs(self,
                                           place,
                                           fetch_list,
                                           expect_outs,
                                           actual_outs,
                                           inplace_atol=None):
        """Compare expect outs and actual outs of an tested op.

        Args:
            place (CPUPlace | CUDAPlace): The place where the op runs. 
            fetch_list (list): The outputs of tested op.
            expect_outs (list): The expect outs of tested op.
            actual_outs (list): The actual outs of tested op.
            inplace_atol (float): The tolerable error, only set when tested op doesn't ensure computational consistency, like group_norm op.

        Returns:
            None.
        """
        # compare expect_outs and actual_outs
        for i, name in enumerate(fetch_list):
L
Leo Chen 已提交
628 629 630 631
            # Note(zhiqiu): inplace_atol should be only set when op doesn't ensure 
            # computational consistency.
            # When inplace_atol is not None, the inplace check uses numpy.allclose
            # to check inplace result instead of numpy.array_equal.
632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794
            if inplace_atol is not None:
                self.assertTrue(
                    np.allclose(
                        np.array(expect_outs[i]),
                        np.array(actual_outs[i]),
                        atol=inplace_atol),
                    "Output (" + name + ") has diff at " + str(place) +
                    " when using and not using inplace" + "\nExpect " +
                    str(expect_outs[i]) + "\n" + "But Got" + str(actual_outs[i])
                    + " in class " + self.__class__.__name__)
            else:
                self.assertTrue(
                    np.array_equal(
                        np.array(expect_outs[i]), np.array(actual_outs[i])),
                    "Output (" + name + ") has diff at " + str(place) +
                    " when using and not using inplace" + "\nExpect " +
                    str(expect_outs[i]) + "\n" + "But Got" + str(actual_outs[i])
                    + " in class " + self.__class__.__name__ + '\n')

    def _construct_grad_program_from_forward(self, fwd_program, grad_op_desc,
                                             op_grad_to_var):
        """Generate grad_program which contains the grad_op.

        Args:
            fwd_program (tuple): The program that contains grad_op_desc's corresponding forward op.
            grad_op_desc (OpDesc): The OpDesc of grad op.
            op_grad_to_var (dict): The relation of variables in grad op and its forward op. 

        Returns:
            grad_program (program): The program which contains the grad_op.
        """
        grad_program = Program()
        grad_block = grad_program.global_block()
        new_op_desc = grad_block.desc.append_op()
        new_op_desc.copy_from(grad_op_desc)
        grad_program._sync_with_cpp()

        # Create grad vars based on fwd vars (shape and dtype)
        for arg in grad_op_desc.input_arg_names(
        ) + grad_op_desc.output_arg_names():
            fwd_var_name = op_grad_to_var.get(arg, None)
            if fwd_var_name is None:
                fwd_var_name = arg
            fwd_var = fwd_program.global_block().vars.get(fwd_var_name)
            assert fwd_var is not None, "{} cannot be found".format(
                fwd_var_name)
            grad_var = grad_block.create_var(
                name=arg,
                dtype=fwd_var.dtype,
                shape=fwd_var.shape,
                type=fwd_var.type,
                persistable=False)

            # Some variables' tensors hold no buffer (tensor's _holder is NULL), like XShape in reshape2 op, 
            # and the shapes of those variables contain 0 (eg. Xshape.shape = [0, 2, 5]). 
            # Set persistable for those variables in order to get them from global_scope for inplace grad test directly other than feed them,
            # since feed op calls check_memory_size() which fails when tensor's holder_ is NULL.
            if 0 in grad_var.shape:
                grad_var.persistable = True
        grad_program._sync_with_cpp()
        return grad_program

    def _construct_grad_feed_map_from_forward(self, place, fwd_res,
                                              grad_op_desc, op_grad_to_var):
        """Generate grad_feed_map for grad_program.

        since we don`t really check gradient accuracy, but check the consistency when using and not using inplace,
        we use fwd outs (also inputs sometimes) to construct grad inputs.

        Args:
            place (CPUPlace | CUDAPlace): The place where the op runs. 
            fwd_res (tuple): The outputs of its forward op, in the same form as returns of _calc_outputs() when for_inplace_test is True.
                i.e., tuple(fwd_outs, fwd_fetch_list, fwd_feed_map, fwd_program, fwd_op_desc)
            grad_op_desc (OpDesc): The OpDesc of grad op.
            op_grad_to_var (dict): The relation of variables in grad op and its fwd_op. 

        Returns:
            grad_feed_map (dict): The feed_map of grad_op.
        """
        fwd_outs, fwd_fetch_list, fwd_feed_map, fwd_program, fwd_op_desc = fwd_res
        p = core.Place()
        p.set_place(place)
        grad_feed_map = {}
        for arg in grad_op_desc.input_arg_names():
            if arg in fwd_feed_map.keys():
                grad_feed_map[arg] = fwd_feed_map[arg]._copy(p)
            else:
                fwd_var_name = op_grad_to_var.get(arg, None)
                if fwd_var_name is None:
                    fwd_var_name = arg

                for i, out_name in enumerate(fwd_fetch_list):
                    if out_name == fwd_var_name:
                        # don't feed variables whose tensors hold no buffer (shape contains 0 like shape = [0,2,5] and holder_ is NULL), like XShape in reshape2 op.
                        # get them from global_scope directly since we have set them persistable in fwd execution
                        if 0 in fwd_program.global_block().var(out_name).shape:
                            continue
                        else:
                            grad_feed_map[arg] = fwd_outs[i]._copy(p)
        return grad_feed_map

    def _get_need_run_ops(self, op_desc, fwd_op_desc=None):
        """Postorder traversal of the 'grad' tree to get all ops that need to run during inplace test.
        An op needs to run druing inplace check if,
        (1) it has infer_inplace,
        (2) it has infer_inplace in its grad descendants. (since we need its outputs as to construct its grad's inputs)
        
        Args:
            op_desc (OpDesc): The op_desc of current op. 
            fwd_op_desc (OpDesc): The op_desc of current op's forward op, None if current op has no forward op. 
                Eg. relu's fwd_op is None, relu_grad's fwd_op is relu, relu_grad_grad's fwd_op is relu_grad, etc.
            
        Returns:
            need_run_ops (list[(op_desc, fwd_op_desc)]): The ops that need to run during inplace test.
        """
        need_run_ops = []
        visited_ops = []

        def _dfs_grad_op(op_desc, fwd_op_desc=None):
            visited_ops.append(op_desc.type())
            has_infer_inplace = fluid.core.has_infer_inplace(op_desc.type())
            has_grad_op_maker = fluid.core.has_grad_op_maker(op_desc.type())
            has_infer_inplace_in_grad_descendants = False
            if not has_grad_op_maker:
                has_infer_inplace_in_descendants = False
            else:
                # get grad_op_desc 
                grad_op_desc_list, op_grad_to_var = core.get_grad_op_desc(
                    op_desc, set(), [])
                if not grad_op_desc_list:
                    has_infer_inplace_in_grad_descendants = False
                else:
                    for i, grad_op_desc in enumerate(grad_op_desc_list):
                        if grad_op_desc.type(
                        ) not in visited_ops and _dfs_grad_op(
                                grad_op_desc, fwd_op_desc=op_desc):
                            has_infer_inplace_in_grad_descendants = True
            if has_infer_inplace or has_infer_inplace_in_grad_descendants:
                need_run_ops.append((op_desc, fwd_op_desc))
                return True
            else:
                return False

        _dfs_grad_op(op_desc, fwd_op_desc=fwd_op_desc)
        return need_run_ops

    def _check_forward_inplace(self,
                               place,
                               no_check_set=None,
                               inplace_atol=None):
        """Chech the inplace correctness of given op (self.op_type).
        Run the op twice with same inputs, one enable inplace and another disable, compare their outputs.
        
        Args:
            place (CPUPlace | CUDAPlace): The place where the op runs. 
            no_check_set (list): The names of outputs that needn't check, like XShape of reshape op.
            inplace_atol (float): The tolerable error, only set when op doesn't ensure computational consistency, like group_norm op.

        Returns:
            expect_res (tuple(outs, fetch_list, feed_map, program, op_desc)): The results of given op. 
                We return this to construct grad_program and grad_feed_map for grad inplace check. 
        """
        # _calc_output() returns in the form tuple(outs, fetch_list, feed_map, program, op_desc) when for_inplace_test=True.
795 796 797 798 799 800 801 802 803 804
        expect_res = self._calc_output(
            place,
            no_check_set=no_check_set,
            enable_inplace=False,
            for_inplace_test=True)
        actual_res = self._calc_output(
            place,
            no_check_set=no_check_set,
            enable_inplace=True,
            for_inplace_test=True)
805
        # compare expect_outs and actual_outs
806 807 808 809 810 811
        self._compare_expect_and_actual_outputs(
            place,
            expect_res[1],
            expect_res[0],
            actual_res[0],
            inplace_atol=inplace_atol)
812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834
        return expect_res

    def _calc_grad_output(self,
                          place,
                          fwd_res,
                          grad_op_desc,
                          enable_inplace=None):
        """Calculate grad_output for given grad_op_desc.

        since we don`t really check gradient accuracy, but check the consistency when using and not using inplace,
        we use fwd outs (also inputs sometimes) to construct grad inputs.

        Args:
            place (CPUPlace | CUDAPlace): The place where the op runs. 
            fwd_res (tuple): The outputs of its forward op, in the same form as returns of _calc_outputs() when for_inplace_test is True.
                i.e., tuple(fwd_outs, fwd_fetch_list, fwd_feed_map, fwd_program, fwd_op_desc).
            grad_op_desc (OpDesc): The OpDesc of grad op.
            enable_inplace (bool): Enable inplace or not.

        Returns:
            res (tuple(outs, fetch_list, feed_map, program, op_desc)): The results of given grad_op_desc.
        """
        fwd_outs, fwd_fetch_list, fwd_feed_map, fwd_program, fwd_op_desc = fwd_res
835
        grad_op_desc_list, op_grad_to_var = core.get_grad_op_desc(fwd_op_desc,
836
                                                                  set(), [])
837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889
        grad_program = self._construct_grad_program_from_forward(
            fwd_program, grad_op_desc, op_grad_to_var)
        grad_feed_map = self._construct_grad_feed_map_from_forward(
            place, fwd_res, grad_op_desc, op_grad_to_var)
        grad_fetch_list = grad_op_desc.output_arg_names()
        exe = Executor(place)
        program = grad_program
        if enable_inplace is not None:
            build_strategy = fluid.BuildStrategy()
            build_strategy.enable_inplace = enable_inplace
            compiled_program = fluid.CompiledProgram(
                grad_program).with_data_parallel(
                    loss_name="", build_strategy=build_strategy, places=place)
            program = compiled_program
        outs = exe.run(program,
                       feed=grad_feed_map,
                       fetch_list=grad_fetch_list,
                       return_numpy=False)
        return outs, grad_fetch_list, grad_feed_map, grad_program, grad_op_desc

    def _check_grad_inplace(self,
                            place,
                            fwd_res,
                            grad_op_desc,
                            inplace_atol=None):
        """Chech the inplace correctness of given grad_op_desc.

        Run the grad op twice with same inputs, one enable inplace and another disable, compare their outputs.
        It works like _check_forward_inplace, but the way to construct program and feed_map differs.
        So we define a new function for grad, grad_grad, etc.

        Args:
            place (CPUPlace | CUDAPlace): The place where the op runs. 
            fwd_res (tuple): The outputs of its forward op, in the same form as returns of _calc_outputs() when for_inplace_test is True.
                i.e., tuple(fwd_outs, fwd_fetch_list, fwd_feed_map, fwd_program, fwd_op_desc).
            grad_op_desc (OpDesc): The OpDesc of grad op.
            inplace_atol (float): The tolerable error, only set when op doesn't ensure computational consistency, like group_norm op.

        Returns:
            expect_res (tuple(outs, fetch_list, feed_map, program, op_desc)): The results of given op. 
                We return this to construct grad_program and grad_feed_map for grad inplace check. 
        """
        expect_res = self._calc_grad_output(
            place, fwd_res, grad_op_desc, enable_inplace=False)
        actual_res = self._calc_grad_output(
            place, fwd_res, grad_op_desc, enable_inplace=True)
        self._compare_expect_and_actual_outputs(
            place,
            expect_res[1],
            expect_res[0],
            actual_res[0],
            inplace_atol=inplace_atol)
        return expect_res
890

891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931
    def check_inplace_output_with_place(self,
                                        place,
                                        no_check_set=None,
                                        inplace_atol=None):
        """Chech the inplace correctness of given op, its grad op, its grad_grad op, etc.

        (1) Get all ops need to run. (see conditions in _get_need_run_ops())
        (2) Run op in need_run_ops, and do inplace check if it has infer_inplace.

        Args:
            place (CPUPlace | CUDAPlace): The place where the op runs. 
            no_check_set (list): The names of outputs that needn't check, like XShape of reshape op.
            inplace_atol (float): The tolerable error, only set when op doesn't ensure computational consistency, like group_norm op.

        Returns:
            None
        """
        has_infer_inplace = fluid.core.has_infer_inplace(self.op_type)
        has_grad_op_maker = fluid.core.has_grad_op_maker(self.op_type)

        fwd_res = self._calc_output(
            place, no_check_set=no_check_set, for_inplace_test=True)
        op_desc = fwd_res[4]
        need_run_ops = self._get_need_run_ops(op_desc)

        res = {}
        for op_desc, father_op_desc in reversed(need_run_ops):
            # The first one is the forward op
            has_infer_inplace = fluid.core.has_infer_inplace(op_desc.type())
            if op_desc.type() == self.op_type:
                if has_infer_inplace:
                    res[op_desc] = self._check_forward_inplace(
                        place,
                        no_check_set=no_check_set,
                        inplace_atol=inplace_atol)
                else:
                    res[op_desc] = self._calc_output(
                        place, no_check_set=no_check_set, for_inplace_test=True)
            else:
                # TODO(zhiqiu): enhance inplace_grad test for ops (sum and activation) using mkldnn/ngraph
                # skip op that use_mkldnn and use_ngraph currently
932
                flags_use_mkldnn = fluid.core.globals()["FLAGS_use_mkldnn"]
933 934 935 936 937 938 939 940 941
                attrs_use_mkldnn = hasattr(
                    self,
                    'attrs') and bool(self.attrs.get('use_mkldnn', False))
                if flags_use_mkldnn or attrs_use_mkldnn:
                    warnings.warn(
                        "check inplace_grad for ops using mkldnn is not supported"
                    )
                    continue
                use_ngraph = fluid.core.is_compiled_with_ngraph(
942
                ) and fluid.core.globals()["FLAGS_use_ngraph"]
943 944 945 946 947 948 949 950 951
                if use_ngraph:
                    warnings.warn(
                        "check inplace_grad for ops using ngraph is not supported"
                    )
                    continue
                if has_infer_inplace:
                    fwd_res = res[father_op_desc]
                    res[op_desc] = self._check_grad_inplace(
                        place, fwd_res, op_desc, inplace_atol=inplace_atol)
952
                else:
953 954
                    res[op_desc] = self._calc_grad_output(place, fwd_res,
                                                          op_desc)
955

956 957
    def check_output_with_place(self,
                                place,
958
                                atol=0,
959
                                no_check_set=None,
M
minqiyang 已提交
960
                                equal_nan=False,
961
                                check_dygraph=True,
962
                                inplace_atol=None):
963 964 965 966 967
        self.infer_dtype_from_inputs_outputs(self.inputs, self.outputs)
        if self.dtype == np.float64 and \
            self.op_type not in op_threshold_white_list.NEED_FIX_FP64_CHECK_OUTPUT_THRESHOLD_OP_LIST:
            atol = 0

968 969 970 971
        if no_check_set is not None:
            if self.op_type not in no_check_set_white_list.no_check_set_white_list:
                raise AssertionError(
                    "no_check_set of op %s must be set to None." % self.op_type)
972

L
lujun 已提交
973 974
        if check_dygraph:
            dygraph_outs = self._calc_dygraph_output(
M
minqiyang 已提交
975
                place, no_check_set=no_check_set)
976
        outs, fetch_list = self._calc_output(place, no_check_set=no_check_set)
Y
Yang Yang(Tony) 已提交
977
        for out_name, out_dup in Operator.get_op_outputs(self.op_type):
978 979
            if out_name not in self.outputs:
                continue
980 981
            if no_check_set is not None and out_name in no_check_set:
                continue
982

983 984 985 986 987 988 989 990 991 992 993 994
            def find_imperative_actual(target_name, dygraph_outs, place):
                with fluid.dygraph.base.guard(place=place):
                    for name in dygraph_outs:
                        if name == target_name:
                            return dygraph_outs[name][0]
                        var_list = dygraph_outs[name]
                        for i, var in enumerate(var_list):
                            if var.name == target_name:
                                return dygraph_outs[name][i]
                    self.assertTrue(False, "Found failed {} {}".format(
                        dygraph_outs.keys(), target_name))

Y
Yang Yang(Tony) 已提交
995 996
            def find_actual(target_name, fetch_list):
                found = [
997 998
                    i for i, var_name in enumerate(fetch_list)
                    if var_name == target_name
Y
Yang Yang(Tony) 已提交
999 1000 1001 1002 1003 1004
                ]
                self.assertTrue(
                    len(found) == 1, "Found {} {}".format(
                        len(found), target_name))
                return found[0]

1005 1006
            if out_dup:
                sub_out = self.outputs[out_name]
Y
Yancey 已提交
1007 1008 1009
                if not isinstance(sub_out, list):
                    raise AssertionError("sub_out type %s is not list",
                                         type(sub_out))
1010 1011
                for item in sub_out:
                    sub_out_name, expect = item[0], item[1]
L
lujun 已提交
1012
                    if check_dygraph:
1013 1014
                        imperative_actual = find_imperative_actual(
                            sub_out_name, dygraph_outs, place)
1015 1016
                        imperative_actual_t = np.array(imperative_actual.value()
                                                       .get_tensor())
Y
Yang Yang(Tony) 已提交
1017
                    idx = find_actual(sub_out_name, fetch_list)
Q
QI JUN 已提交
1018 1019
                    actual = outs[idx]
                    actual_t = np.array(actual)
1020 1021
                    expect_t = expect[0] \
                        if isinstance(expect, tuple) else expect
1022 1023
                    self.assertTrue(
                        np.allclose(
1024
                            actual_t, expect_t, atol=atol, equal_nan=equal_nan),
Y
Yang Yang(Tony) 已提交
1025 1026
                        "Output (" + sub_out_name + ") has diff at " +
                        str(place))
L
lujun 已提交
1027
                    if check_dygraph:
M
minqiyang 已提交
1028 1029 1030 1031 1032 1033 1034
                        self.assertTrue(
                            np.allclose(
                                imperative_actual_t,
                                expect_t,
                                atol=atol,
                                equal_nan=equal_nan),
                            "Output (" + sub_out_name + ") has diff at " +
L
lujun 已提交
1035
                            str(place) + " in dygraph mode")
1036 1037
                    if isinstance(expect, tuple):
                        self.assertListEqual(
1038 1039
                            actual.recursive_sequence_lengths(), expect[1],
                            "Output (" + sub_out_name +
Q
QI JUN 已提交
1040
                            ") has different lod at " + str(place))
1041 1042
                        if check_dygraph:
                            self.assertListEqual(
1043
                                imperative_actual.value().get_tensor()
1044 1045 1046 1047
                                .recursive_sequence_lengths(), expect[1],
                                "Output (" + out_name +
                                ") has different lod at " + str(place) +
                                " in dygraph mode")
1048
            else:
L
lujun 已提交
1049
                if check_dygraph:
1050 1051
                    imperative_actual = find_imperative_actual(
                        out_name, dygraph_outs, place)
1052 1053
                    imperative_actual_t = np.array(imperative_actual.value()
                                                   .get_tensor())
Y
Yang Yang(Tony) 已提交
1054
                idx = find_actual(out_name, fetch_list)
Q
QI JUN 已提交
1055 1056
                actual = outs[idx]
                actual_t = np.array(actual)
1057
                expect = self.outputs[out_name]
1058
                expect_t = expect[0] if isinstance(expect, tuple) else expect
1059 1060
                self.assertTrue(
                    np.allclose(
1061
                        actual_t, expect_t, atol=atol, equal_nan=equal_nan),
E
emailweixu 已提交
1062
                    "Output (" + out_name + ") has diff at " + str(place) +
D
dzhwinter 已提交
1063
                    "\nExpect " + str(expect_t) + "\n" + "But Got" +
1064
                    str(actual_t) + " in class " + self.__class__.__name__)
L
lujun 已提交
1065
                if check_dygraph:
1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081
                    if six.moves.reduce(
                            lambda x, y: x * y, imperative_actual_t.shape,
                            1) == 0 and six.moves.reduce(
                                lambda x, y: x * y, expect_t.shape, 1) == 0:
                        pass
                    else:
                        self.assertTrue(
                            np.allclose(
                                imperative_actual_t,
                                expect_t,
                                atol=atol,
                                equal_nan=equal_nan),
                            "Output (" + out_name + ") has diff at " +
                            str(place) + "\nExpect " + str(expect_t) + "\n" +
                            "But Got" + str(imperative_actual_t) + " in class "
                            + self.__class__.__name__)
1082
                if isinstance(expect, tuple):
1083 1084
                    self.assertListEqual(actual.recursive_sequence_lengths(),
                                         expect[1], "Output (" + out_name +
1085
                                         ") has different lod at " + str(place))
L
lujun 已提交
1086
                    if check_dygraph:
M
minqiyang 已提交
1087
                        self.assertListEqual(
1088
                            imperative_actual.value().get_tensor()
M
minqiyang 已提交
1089 1090
                            .recursive_sequence_lengths(), expect[1],
                            "Output (" + out_name + ") has different lod at " +
L
lujun 已提交
1091
                            str(place) + " in dygraph mode")
1092

L
Leo Chen 已提交
1093 1094 1095 1096 1097 1098 1099
        # Note(zhiqiu): inplace_atol should be only set when op doesn't ensure 
        # computational consistency.
        # For example, group_norm uses AtomicAdd on CUDAPlace, which do not ensure
        # computation order when multiple threads write the same address. So the 
        # result of group_norm is non-deterministic when datatype is float.
        # When inplace_atol is not None, the inplace check uses numpy.allclose
        # to check inplace result instead of numpy.array_equal.
1100 1101
        if inplace_atol is not None:
            warnings.warn(
L
Leo Chen 已提交
1102 1103
                "inplace_atol should only be set when op doesn't ensure computational consistency, please check it!"
            )
1104 1105
        # Check inplace for given op, its grad op, its grad_grad op, etc.
        # No effect on original OpTest 
1106 1107 1108
        self.check_inplace_output_with_place(
            place, no_check_set=no_check_set, inplace_atol=inplace_atol)

1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156
        if check_dygraph:
            return outs, dygraph_outs, fetch_list
        else:
            return outs, fetch_list

    def check_compile_vs_runtime(self, fetch_list, fetch_outs):
        def find_fetch_index(target_name, fetch_list):
            found = [
                i for i, var_name in enumerate(fetch_list)
                if var_name == target_name
            ]
            if len(found) == 0:
                return -1
            else:
                self.assertTrue(
                    len(found) == 1,
                    "Found {} {}".format(len(found), target_name))
                return found[0]

        for name in self.op.desc.output_names():
            var_names = self.op.desc.output(name)
            for var_name in var_names:
                i = find_fetch_index(var_name, fetch_list)
                if i == -1:
                    # The output is dispensiable or intermediate.
                    break
                out = fetch_outs[i]
                if isinstance(out, core.LoDTensor):
                    lod_level_runtime = len(out.lod())
                else:
                    if isinstance(out, core.LoDTensorArray):
                        warnings.warn(
                            "The check of LoDTensorArray's lod_level is not implemented now!"
                        )
                    lod_level_runtime = 0

                var = self.program.global_block().var(var_name)
                if var.type == core.VarDesc.VarType.LOD_TENSOR:
                    lod_level_compile = var.lod_level
                else:
                    lod_level_compile = 0
                self.assertEqual(
                    lod_level_compile, lod_level_runtime,
                    "The lod_level of Output (" + name +
                    ") is different between compile-time and runtime (" +
                    str(lod_level_compile) + " vs " + str(lod_level_runtime) +
                    ")")

1157
    def _get_places(self):
D
dzhwinter 已提交
1158 1159 1160 1161 1162 1163
        if self.dtype == np.float16:
            if core.is_compiled_with_cuda() and core.op_support_gpu(
                    self.op_type):
                place = core.CUDAPlace(0)
                if core.is_float16_supported(place):
                    return [place]
W
Wu Yi 已提交
1164 1165
                else:
                    return []
D
dzhwinter 已提交
1166 1167
            else:
                return []
1168
        places = [fluid.CPUPlace()]
1169
        cpu_only = self._cpu_only if hasattr(self, '_cpu_only') else False
1170
        use_ngraph = fluid.core.is_compiled_with_ngraph(
1171
        ) and fluid.core.globals()['FLAGS_use_ngraph']
B
baojun 已提交
1172 1173
        if use_ngraph:
            cpu_only = True
1174 1175
        if core.is_compiled_with_cuda() and core.op_support_gpu(self.op_type)\
           and not cpu_only:
D
dzhwinter 已提交
1176
            places.append(core.CUDAPlace(0))
1177 1178
        return places

M
minqiyang 已提交
1179 1180 1181 1182
    def check_output(self,
                     atol=1e-5,
                     no_check_set=None,
                     equal_nan=False,
1183
                     check_dygraph=True,
1184
                     inplace_atol=None):
1185
        self.__class__.op_type = self.op_type
1186 1187
        if hasattr(self, "use_mkldnn"):
            self.__class__.use_mkldnn = self.use_mkldnn
1188
        places = self._get_places()
Q
qijun 已提交
1189
        for place in places:
1190 1191 1192 1193 1194 1195
            res = self.check_output_with_place(place, atol, no_check_set,
                                               equal_nan, check_dygraph)
            if check_dygraph:
                outs, dygraph_outs, fetch_list = res
            else:
                outs, fetch_list = res
1196
            if self.op_type not in compile_vs_runtime_white_list.COMPILE_RUN_OP_WHITE_LIST:
1197
                self.check_compile_vs_runtime(fetch_list, outs)
Q
qijun 已提交
1198

1199
    def check_output_customized(self, checker):
1200
        places = self._get_places()
1201 1202 1203
        for place in places:
            outs = self.calc_output(place)
            outs = [np.array(out) for out in outs]
1204
            outs.sort(key=len)
1205 1206
            checker(outs)

D
Dun 已提交
1207 1208
    def _assert_is_close(self, numeric_grads, analytic_grads, names,
                         max_relative_error, msg_prefix):
1209

M
minqiyang 已提交
1210
        for a, b, name in six.moves.zip(numeric_grads, analytic_grads, names):
1211 1212 1213 1214 1215 1216
            # It asserts np.abs(a - b) / np.abs(a) < max_relative_error, in which
            # max_relative_error is 1e-7. According to the value of np.abs(a), we
            # change np.abs(a) to achieve dynamic threshold. For example, if
            # the value of np.abs(a) is between 1e-10 and 1e-8, we set np.abs(a)*=1e4.
            # Therefore, it asserts np.abs(a - b) / (np.abs(a)*1e4) < max_relative_error,
            # which is the same as np.abs(a - b) / np.abs(a) < max_relative_error*1e4.
1217
            abs_a = np.abs(a)
1218 1219 1220 1221 1222 1223 1224
            if self.dtype == np.float64 and \
                self.op_type not in op_threshold_white_list.NEED_FIX_FP64_CHECK_GRAD_THRESHOLD_OP_LIST:
                abs_a[abs_a < 1e-10] = 1e-3
                abs_a[np.logical_and(abs_a > 1e-10, abs_a <= 1e-8)] *= 1e4
                abs_a[np.logical_and(abs_a > 1e-8, abs_a <= 1e-6)] *= 1e2
            else:
                abs_a[abs_a < 1e-3] = 1
1225 1226 1227 1228 1229 1230

            diff_mat = np.abs(a - b) / abs_a
            max_diff = np.max(diff_mat)

            def err_msg():
                offset = np.argmax(diff_mat > max_relative_error)
1231 1232 1233 1234
                return ("%s error, %s variable %s max gradient diff %f over limit %f, "
                    "the first error element is %d, expected %f, but got %f.") \
                    % (self.op_type, msg_prefix, name, max_diff, max_relative_error,
                    offset, a.flatten()[offset], b.flatten()[offset])
1235 1236 1237

            self.assertLessEqual(max_diff, max_relative_error, err_msg())

1238 1239 1240 1241 1242 1243 1244
    def _check_grad_helper(self):
        self.infer_dtype_from_inputs_outputs(self.inputs, self.outputs)
        self.__class__.op_type = self.op_type
        self.__class__.exist_check_grad = True
        if self.dtype == np.float64:
            self.__class__.exist_fp64_check_grad = True

1245 1246
    def check_grad(self,
                   inputs_to_check,
Y
Yancey 已提交
1247
                   output_names,
1248
                   no_grad_set=None,
1249
                   numeric_grad_delta=0.005,
1250
                   in_place=False,
Q
Qiao Longfei 已提交
1251
                   max_relative_error=0.005,
1252 1253
                   user_defined_grads=None,
                   check_dygraph=True):
1254
        self._check_grad_helper()
1255
        places = self._get_places()
1256 1257 1258 1259
        for place in places:
            self.check_grad_with_place(place, inputs_to_check, output_names,
                                       no_grad_set, numeric_grad_delta,
                                       in_place, max_relative_error,
1260
                                       user_defined_grads, check_dygraph)
1261 1262 1263 1264 1265 1266 1267 1268 1269

    def check_grad_with_place(self,
                              place,
                              inputs_to_check,
                              output_names,
                              no_grad_set=None,
                              numeric_grad_delta=0.005,
                              in_place=False,
                              max_relative_error=0.005,
1270 1271
                              user_defined_grads=None,
                              check_dygraph=True):
1272
        OpTest.op_type = self.op_type
1273
        self.scope = core.Scope()
Q
qijun 已提交
1274
        op_inputs = self.inputs if hasattr(self, "inputs") else dict()
1275
        op_outputs = self.outputs if hasattr(self, "outputs") else dict()
Q
qijun 已提交
1276
        op_attrs = self.attrs if hasattr(self, "attrs") else dict()
P
phlrain 已提交
1277

1278
        self._check_grad_helper()
1279 1280 1281 1282
        if self.dtype == np.float64 and \
            self.op_type not in op_threshold_white_list.NEED_FIX_FP64_CHECK_GRAD_THRESHOLD_OP_LIST:
            numeric_grad_delta = 1e-5
            max_relative_error = 1e-7
1283

P
phlrain 已提交
1284 1285 1286 1287 1288 1289 1290 1291 1292 1293
        cache_list = None
        if hasattr(self, "cache_name_list"):
            cache_list = self.cache_name_list
        self.op = create_op(
            self.scope,
            self.op_type,
            op_inputs,
            op_outputs,
            op_attrs,
            cache_list=cache_list)
Y
Yu Yang 已提交
1294

1295 1296 1297
        if no_grad_set is None:
            no_grad_set = set()

Y
Yancey 已提交
1298 1299 1300
        if not type(output_names) is list:
            output_names = [output_names]

Q
Qiao Longfei 已提交
1301
        numeric_grads = user_defined_grads or [
1302
            get_numeric_gradient(
1303
                place,
1304 1305 1306 1307
                self.scope,
                self.op,
                self.inputs,
                input_to_check,
Y
Yancey 已提交
1308
                output_names,
1309
                delta=numeric_grad_delta,
C
chengduo 已提交
1310
                in_place=in_place) for input_to_check in inputs_to_check
1311
        ]
1312 1313
        analytic_grads = self._get_gradient(inputs_to_check, place,
                                            output_names, no_grad_set)
D
Dun 已提交
1314 1315 1316
        self._assert_is_close(numeric_grads, analytic_grads, inputs_to_check,
                              max_relative_error,
                              "Gradient Check On %s" % str(place))
Q
qijun 已提交
1317

1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425
        if check_dygraph:
            dygraph_grad = self._get_dygraph_grad(inputs_to_check, place,
                                                  output_names, no_grad_set)
            self._assert_is_close(numeric_grads, dygraph_grad, inputs_to_check,
                                  max_relative_error,
                                  "Gradient Check On %s" % str(place))

    def _find_var_in_dygraph(self, output_vars, name):
        if name in output_vars:
            return output_vars[name]
        else:
            for output_vars_index in output_vars:
                for output_vars_selected in output_vars[output_vars_index]:
                    if output_vars_selected.name == name:
                        return output_vars_selected

    def _get_dygraph_grad(self,
                          inputs_to_check,
                          place,
                          output_names,
                          no_grad_set=None):
        with fluid.dygraph.base.guard(place=place):
            block = fluid.default_main_program().global_block()

            op_proto = OpProtoHolder.instance().get_op_proto(self.op_type)

            # prepare input variable
            inputs, inputs_grad_dict = self.append_input_output_for_dygraph(
                op_proto, self.inputs, True, True, block)

            # prepare output variable
            outputs = self.append_input_output_for_dygraph(
                op_proto, self.outputs, False, False, block)

            # prepare attrbutes
            attrs_outputs = {}
            if hasattr(self, "attrs"):
                for attrs_name in self.attrs:
                    if self.attrs[attrs_name] is not None:
                        attrs_outputs[attrs_name] = self.attrs[attrs_name]
            block.append_op(
                type=self.op_type,
                inputs=inputs,
                outputs=outputs,
                attrs=attrs_outputs if hasattr(self, "attrs") else None)

            outputs_valid = {}
            for output_name in output_names:
                outputs_valid[output_name] = self._find_var_in_dygraph(
                    outputs, output_name)

            if len(outputs_valid) == 1:
                loss = block.create_var(
                    dtype=self.dtype,
                    type=core.VarDesc.VarType.LOD_TENSOR,
                    persistable=False,
                    stop_gradient=False,
                    shape=[1])
                for outputs_valid_key in outputs_valid:
                    block.append_op(
                        type="mean",
                        inputs={"X": outputs_valid[outputs_valid_key]},
                        outputs={"Out": [loss]},
                        attrs=None)
            else:
                avg_sum = []
                for cur_loss in outputs_valid:
                    cur_avg_loss = block.create_var(
                        dtype=self.dtype,
                        type=core.VarDesc.VarType.LOD_TENSOR,
                        persistable=False,
                        stop_gradient=False)
                    block.append_op(
                        type="mean",
                        inputs={"X": outputs_valid[cur_loss]},
                        outputs={"Out": [cur_avg_loss]},
                        attrs=None)
                    avg_sum.append(cur_avg_loss)
                loss_sum = block.create_var(
                    dtype=self.dtype,
                    type=core.VarDesc.VarType.LOD_TENSOR,
                    persistable=False,
                    stop_gradient=False,
                    shape=[1])
                block.append_op(
                    type='sum',
                    inputs={"X": avg_sum},
                    outputs={"Out": loss_sum},
                    attrs=None)
                loss = block.create_var(
                    dtype=self.dtype,
                    type=core.VarDesc.VarType.LOD_TENSOR,
                    persistable=False,
                    stop_gradient=False,
                    shape=[1])
                block.append_op(
                    type='scale',
                    inputs={"X": loss_sum},
                    outputs={"Out": loss},
                    attrs={'scale': 1.0 / float(len(avg_sum))})
            loss.backward()

            fetch_list_grad = []
            for inputs_to_check_name in inputs_to_check:
                a = inputs_grad_dict[inputs_to_check_name].gradient()
                fetch_list_grad.append(a)
            return fetch_list_grad

Y
Yu Yang 已提交
1426 1427 1428 1429 1430
    @staticmethod
    def _numpy_to_lod_tensor(np_value, lod, place):
        tensor = core.LoDTensor()
        tensor.set(np_value, place)
        if lod is not None:
1431
            tensor.set_recursive_sequence_lengths(lod)
Y
Yu Yang 已提交
1432 1433
        return tensor

K
Kexin Zhao 已提交
1434
    @staticmethod
K
Kexin Zhao 已提交
1435 1436
    def np_dtype_to_fluid_dtype(input):
        return input
K
Kexin Zhao 已提交
1437

D
dzhwinter 已提交
1438 1439 1440 1441 1442 1443 1444 1445
    @staticmethod
    def fluid_dtype_to_np_dtype(self, dtype):
        return dtype

    @staticmethod
    def np_value_to_fluid_value(input):
        return input

1446 1447 1448 1449 1450 1451
    def _get_gradient(self,
                      input_to_check,
                      place,
                      output_names,
                      no_grad_set,
                      parallel=False):
Y
Yu Yang 已提交
1452 1453
        prog = Program()
        block = prog.global_block()
1454 1455
        self._append_ops(block)
        loss = append_loss_ops(block, output_names)
F
fengjiayi 已提交
1456
        param_grad_list = append_backward(
Y
Yu Yang 已提交
1457 1458
            loss=loss, parameter_list=input_to_check, no_grad_set=no_grad_set)

1459 1460
        inputs = self._get_inputs(block)
        feed_dict = self.feed_var(inputs, place)
Y
Yu Yang 已提交
1461 1462

        fetch_list = [g for p, g in param_grad_list]
1463 1464
        if parallel:
            use_cuda = False
1465
            if isinstance(place, fluid.CUDAPlace):
1466
                use_cuda = True
1467 1468 1469 1470
            compiled_prog = fluid.CompiledProgram(prog).with_data_parallel(
                loss_name=loss.name, places=place)
            prog = compiled_prog
        executor = fluid.Executor(place)
1471 1472 1473
        return list(
            map(np.array,
                executor.run(prog, feed_dict, fetch_list, return_numpy=False)))