mlir_to_runtime_translate.cc 19.7 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/infrt/host_context/mlir_to_runtime_translate.h"

#include <llvm/Support/SourceMgr.h>
#include <mlir/Dialect/StandardOps/IR/Ops.h>
19 20
#include <mlir/IR/BuiltinOps.h>
#include <mlir/IR/BuiltinTypes.h>
Y
Yan Chunwei 已提交
21 22 23 24 25 26 27 28 29 30 31 32 33
#include <mlir/IR/Diagnostics.h>
#include <mlir/IR/OperationSupport.h>
#include <mlir/Parser.h>

#include <iostream>
#include <memory>
#include <string>
#include <unordered_map>
#include <utility>
#include <vector>

#include "boost/optional.hpp"
#include "paddle/infrt/common/string.h"
34
#include "paddle/infrt/dialect/dense_tensor.h"
Y
Yan Chunwei 已提交
35 36 37 38 39 40 41 42 43 44
#include "paddle/infrt/dialect/mlir_loader.h"
#include "paddle/infrt/dialect/tensor_shape.h"
#include "paddle/infrt/host_context/core_runtime.h"
#include "paddle/infrt/host_context/kernel_frame.h"
#include "paddle/infrt/host_context/kernel_registry.h"
#include "paddle/infrt/host_context/mlir_function_executable.h"
#include "paddle/infrt/host_context/op_executable.h"
#include "paddle/infrt/host_context/value.h"
#include "paddle/infrt/tensor/tensor_shape.h"

45 46
namespace infrt {
namespace host_context {
Y
Yan Chunwei 已提交
47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77

template <typename T>
std::string DumpToString(T& op) {  // NOLINT
  std::string buffer;
  llvm::raw_string_ostream os(buffer);
  op.print(os);
  os.flush();
  return buffer;
}

struct MlirToRuntimeTranslator::Impl {
  mlir::ModuleOp module;
  // The runtime for a function call.
  CoreRuntimeBuilder* runtime{};
  // The current working op, the translator process the ops one by one, each
  // time it updates `cur_op` here to current op
  // working on.
  OpExecutableBuilder* cur_op{};

  // record the current function name.
  std::string cur_func_name;

  // Name to function definitions.
  std::unordered_map<std::string, mlir::FuncOp> func_defs;

  // Map from an operation to its results.
  std::unordered_map<const mlir::Operation*, std::vector<ValueRef>> op_results;
  llvm::DenseMap<mlir::Value, ValueRef> value_map;
};

bool MlirToRuntimeTranslator::EmitConstantOp(mlir::Operation* op) {
78
  if (!infrt::Startswith(op->getName().getStringRef().str(), "Infrt.constant"))
Y
Yan Chunwei 已提交
79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118
    return false;
  VLOG(3) << "Emitting constant op [" << op->getName().getStringRef().str()
          << "]";

  auto attr = op->getAttr("value");
  if (attr.isa<mlir::FloatAttr>()) {
    if (attr.getType().isF32()) {
      impl_->op_results[op] = {ValueRef(
          static_cast<float>(attr.cast<mlir::FloatAttr>().getValueAsDouble()))};
    } else if (attr.getType().isF64()) {
      impl_->op_results[op] = {ValueRef(static_cast<double>(
          attr.cast<mlir::FloatAttr>().getValueAsDouble()))};
    } else {
      LOG(FATAL) << "Not supported attribute type";
    }
    return true;
  }

  if (attr.isa<mlir::IntegerAttr>()) {
    if (attr.getType().isInteger(32)) {
      impl_->op_results[op] = {ValueRef(
          static_cast<int32_t>(attr.cast<mlir::IntegerAttr>().getSInt()))};
    } else if (attr.getType().isInteger(64)) {
      impl_->op_results[op] = {ValueRef(
          static_cast<int64_t>(attr.cast<mlir::IntegerAttr>().getSInt()))};
    } else if (attr.getType().isInteger(1)) {
      impl_->op_results[op] = {
          ValueRef(static_cast<bool>(attr.cast<mlir::IntegerAttr>().getInt()))};
    } else {
      LOG(FATAL) << "Not supported attribute type";
    }
    return true;
  }

  LOG(FATAL) << "Not supported constant attribute type";
  return true;
}

template <>
boost::optional<int32_t> MlirToRuntimeTranslator::EmitAttribute(
119 120 121 122
    const mlir::Attribute& attr) {
  if (!attr.isa<mlir::IntegerAttr>()) return boost::none;
  if (attr.isa<mlir::IntegerAttr>()) {
    auto val = attr.cast<mlir::IntegerAttr>();
Y
Yan Chunwei 已提交
123 124 125 126 127 128 129 130
    if (val.getType().isInteger(32)) {
      return val.getInt();
    }
  }
  return boost::none;
}
template <>
boost::optional<int64_t> MlirToRuntimeTranslator::EmitAttribute(
131 132 133 134
    const mlir::Attribute& attr) {
  if (!attr.isa<mlir::IntegerAttr>()) return boost::none;
  if (attr.isa<mlir::IntegerAttr>()) {
    auto val = attr.cast<mlir::IntegerAttr>();
Y
Yan Chunwei 已提交
135 136 137 138 139 140 141 142 143 144
    if (val.getType().isInteger(64)) {
      return val.getInt();
    }
  }
  return boost::none;
}

// TODO(Superjomn) Make double and float parsing share some thing.
template <>
boost::optional<float> MlirToRuntimeTranslator::EmitAttribute(
145 146 147 148
    const mlir::Attribute& attr) {
  if (!attr.isa<mlir::FloatAttr>()) return boost::none;
  if (attr.isa<mlir::FloatAttr>()) {
    auto val = attr.cast<mlir::FloatAttr>();
Y
Yan Chunwei 已提交
149 150 151 152 153
    if (val.getType().isF32()) return val.getValueAsDouble();
  }
  return boost::none;
}

154 155 156 157 158 159 160 161 162 163 164
template <>
boost::optional<bool> MlirToRuntimeTranslator::EmitAttribute(
    const mlir::Attribute& attr) {
  if (!attr.isa<mlir::BoolAttr>()) return boost::none;
  if (attr.isa<mlir::BoolAttr>()) {
    auto val = attr.cast<mlir::BoolAttr>();
    return val.getValue();
  }
  return boost::none;
}

Y
Yan Chunwei 已提交
165 166
template <>
boost::optional<double> MlirToRuntimeTranslator::EmitAttribute(
167 168 169 170
    const mlir::Attribute& attr) {
  if (!attr.isa<mlir::FloatAttr>()) return boost::none;
  if (attr.isa<mlir::FloatAttr>()) {
    auto val = attr.cast<mlir::FloatAttr>();
Y
Yan Chunwei 已提交
171 172 173 174 175 176 177
    if (val.getType().isF64()) return val.getValueAsDouble();
  }
  return boost::none;
}

template <>
boost::optional<std::string> MlirToRuntimeTranslator::EmitAttribute(
178 179 180
    const mlir::Attribute& attr) {
  if (!attr.isa<mlir::StringAttr>()) return boost::none;
  return attr.cast<mlir::StringAttr>().getValue().str();
Y
Yan Chunwei 已提交
181 182 183 184 185
}

#define PROCESS_ARRAY_INT(type__, bits__)                                      \
  template <>                                                                  \
  boost::optional<std::vector<type__>> MlirToRuntimeTranslator::EmitAttribute( \
186 187 188
      const mlir::Attribute& attr) {                                           \
    if (!attr.isa<mlir::ArrayAttr>()) return boost::none;                      \
    auto array = attr.cast<mlir::ArrayAttr>();                                 \
Y
Yan Chunwei 已提交
189 190 191 192 193 194 195 196 197 198 199 200 201
    CHECK(!array.empty());                                                     \
                                                                               \
    if (!array[0].getType().isInteger(bits__)) {                               \
      return boost::none;                                                      \
    }                                                                          \
                                                                               \
    std::vector<type__> res;                                                   \
    for (auto& v : array) {                                                    \
      res.push_back(v.cast<mlir::IntegerAttr>().getInt());                     \
    }                                                                          \
    return res;                                                                \
  }

202
PROCESS_ARRAY_INT(bool, 1);
Y
Yan Chunwei 已提交
203 204 205 206 207 208
PROCESS_ARRAY_INT(int16_t, 16);
PROCESS_ARRAY_INT(int32_t, 32);
PROCESS_ARRAY_INT(int64_t, 64);

template <>
boost::optional<std::vector<float>> MlirToRuntimeTranslator::EmitAttribute(
209 210 211
    const mlir::Attribute& attr) {
  if (!attr.isa<mlir::ArrayAttr>()) return boost::none;
  auto array = attr.cast<mlir::ArrayAttr>();
Y
Yan Chunwei 已提交
212 213 214 215 216 217 218 219 220 221 222 223 224
  CHECK(!array.empty());

  if (!array[0].getType().isF32()) return boost::none;

  std::vector<float> res;
  for (auto& v : array) {
    res.push_back(v.cast<mlir::FloatAttr>().getValueAsDouble());
  }
  return res;
}

template <>
boost::optional<std::vector<double>> MlirToRuntimeTranslator::EmitAttribute(
225 226 227
    const mlir::Attribute& attr) {
  if (!attr.isa<mlir::ArrayAttr>()) return boost::none;
  auto array = attr.cast<mlir::ArrayAttr>();
Y
Yan Chunwei 已提交
228 229 230 231 232 233 234 235 236 237 238 239
  CHECK(!array.empty());

  if (!array[0].getType().isF64()) return boost::none;

  std::vector<double> res;
  for (auto& v : array) {
    res.push_back(v.cast<mlir::FloatAttr>().getValueAsDouble());
  }
  return res;
}

static bool IsReturn(mlir::Operation* op) {
240
  return op->getName().getStringRef() == "Infrt.return";
Y
Yan Chunwei 已提交
241 242 243 244 245 246 247 248 249 250 251 252 253
}

bool MlirToRuntimeTranslator::EmitGeneralOp(mlir::Operation* op) {
  CHECK(impl_->runtime);
  impl_->cur_op =
      impl_->runtime->NewOpExecutable(op->getName().getStringRef().str());

  VLOG(3) << "processing general op : " << op->getName().getStringRef().str();

  // process operands
  for (int i = 0, e = op->getNumOperands(); i < e; i++) {
    // function argument as value
    auto operand = op->getOperand(i);
254 255
    /// if (operand.getKind() == mlir::Value::Kind::BlockArgument) {
    if (operand.isa<mlir::BlockArgument>()) {
Y
Yan Chunwei 已提交
256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282
      mlir::BlockArgument arg = operand.dyn_cast<mlir::BlockArgument>();
      Value* arg_value = GetValue(arg);
      impl_->cur_op->AppendArgument(arg_value);
      VLOG(3) << "* op mlir operand: " << DumpToString(arg) << " "
              << GetValue(arg);
      continue;
    }

    // normal value
    Value* arg_value = GetValue(operand);
    if (!arg_value) {
      auto upstream_op = operand.getDefiningOp();
      arg_value = GetOpResult(upstream_op);
    }
    CHECK(arg_value) << "No-exist argument value found: "
                     << DumpToString(operand);
    impl_->cur_op->AppendArgument(arg_value);

    VLOG(3) << "* op mlir operand: " << DumpToString(operand) << " "
            << GetValue(operand) << " vs " << arg_value;
  }

  // process attributes
  auto attrs = op->getAttrs();

  for (size_t i = 0; i < attrs.size(); i++) {
    auto& attr = attrs[i];
283
    if (auto v = EmitAttribute<int32_t>(attr.getValue())) {
Y
Yan Chunwei 已提交
284
      impl_->cur_op->AppendAttribute(new Value(*v));
285
    } else if (auto v = EmitAttribute<int64_t>(attr.getValue())) {
Y
Yan Chunwei 已提交
286
      impl_->cur_op->AppendAttribute(new Value(*v));
287
    } else if (auto v = EmitAttribute<float>(attr.getValue())) {
Y
Yan Chunwei 已提交
288
      impl_->cur_op->AppendAttribute(new Value(*v));
289
    } else if (auto v = EmitAttribute<double>(attr.getValue())) {
Y
Yan Chunwei 已提交
290
      impl_->cur_op->AppendAttribute(new Value(*v));
291
    } else if (auto v = EmitAttribute<std::string>(attr.getValue())) {
Y
Yan Chunwei 已提交
292
      impl_->cur_op->AppendAttribute(new Value(std::move(*v)));
293 294
    } else if (auto v = EmitAttribute<bool>(attr.getValue())) {
      impl_->cur_op->AppendAttribute(new Value(*v));
295
    } else if (auto v = EmitAttribute<std::vector<int16_t>>(attr.getValue())) {
Y
Yan Chunwei 已提交
296
      impl_->cur_op->AppendAttribute(new Value(std::move(*v)));
297
    } else if (auto v = EmitAttribute<std::vector<int32_t>>(attr.getValue())) {
Y
Yan Chunwei 已提交
298
      impl_->cur_op->AppendAttribute(new Value(std::move(*v)));
299
    } else if (auto v = EmitAttribute<std::vector<int64_t>>(attr.getValue())) {
Y
Yan Chunwei 已提交
300
      impl_->cur_op->AppendAttribute(new Value(std::move(*v)));
301
    } else if (auto v = EmitAttribute<std::vector<float>>(attr.getValue())) {
Y
Yan Chunwei 已提交
302
      impl_->cur_op->AppendAttribute(new Value(std::move(*v)));
303
    } else if (auto v = EmitAttribute<std::vector<double>>(attr.getValue())) {
Y
Yan Chunwei 已提交
304 305 306 307 308 309
      impl_->cur_op->AppendAttribute(new Value(std::move(*v)));
    } else {
      LOG(FATAL) << "Not supported attribute type";
    }
  }

310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336
  // process results
  llvm::SmallVector<Value*, 4> res_values;
  for (int i = 0, e = op->getNumResults(); i < e; i++) {
    auto res = op->getResult(i);
    if (res.getType().isa<::infrt::DenseTensorType>()) {
      auto r = impl_->value_map.try_emplace(
          res, ValueRef(new Value{::phi::DenseTensor()}));
      CHECK(r.second) << "Duplicate add mlir value [" << DumpToString(res)
                      << "]";
      res_values.push_back(r.first->second.get());
    } else {
      res_values.push_back(AddValue(res));
    }

    VLOG(3) << "* op mlir res: " << DumpToString(res) << " " << GetValue(res);
  }
  impl_->cur_op->SetResults(res_values);

#ifdef INFRT_DEBUG
  {
    VLOG(3) << "check result";
    for (int i = 0; i < impl_->cur_op->frame().GetNumResults(); i++) {
      VLOG(3) << "+ res value: " << impl_->cur_op->frame().GetResults()[i];
    }
  }
#endif

Y
Yan Chunwei 已提交
337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358
  // process regions, we treat regions as attribute.
  auto num_regions = op->getNumRegions();
  if (num_regions > 0) {
    CHECK_EQ(num_regions, 1UL)
        << "op with more than one region is not supported yet.";
    auto& region = op->getRegions().front();
    auto num_blocks = region.getBlocks().size();
    CHECK_EQ(num_blocks, 1UL)
        << "region with more than one block is not supported yet.";

    // process arguments
    llvm::SmallVector<mlir::Type, 4> inputs;
    auto& block = region.getBlocks().front();
    for (auto arg : block.getArguments()) inputs.push_back(arg.getType());

    // process results
    // NOTE: if an op contains a region, we simply ignore the region's return
    // values,
    //       or its return values will conflict with op's return values.
    llvm::SmallVector<mlir::Type, 0> results;

    auto func_type =
359
        mlir::FunctionType::get(region.getContext(), inputs, results);
Y
Yan Chunwei 已提交
360 361 362 363 364 365 366 367 368 369 370
    auto* function = impl_->cur_op->CreateFunctionExecutable(
        &region, func_type, &impl_->func_defs);
    impl_->cur_op->AppendAttribute(new Value(function));
  }

  return true;
}

bool MlirToRuntimeTranslator::EmitReturnOp(
    mlir::Operation* op, llvm::SmallVectorImpl<mlir::Value>* results) {
  CHECK(results);
371
  if (op->getName().getStringRef() == "Infrt.return") {
Y
Yan Chunwei 已提交
372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443
    for (size_t i = 0; i < op->getNumOperands(); i++) {
      results->push_back(op->getOperand(i));
    }

    return true;
  }
  return false;
}

bool MlirToRuntimeTranslator::EmitFunctions() {
  for (auto func_op : impl_->module.getOps<mlir::FuncOp>()) {
    EmitFunction(func_op);
  }
  return true;
}

void MlirToRuntimeTranslator::EmitFunction(mlir::FuncOp op) {
  impl_->func_defs[op.getName().str()] = op;
}

Value* MlirToRuntimeTranslator::GetOpResult(mlir::Operation* op) {
  auto it = impl_->op_results.find(op);
  return it == impl_->op_results.end() ? nullptr : it->second.front().get();
}

Value* MlirToRuntimeTranslator::GetValue(mlir::Value value) {
  auto it = impl_->value_map.find(value);
  return it == impl_->value_map.end() ? nullptr : it->second.get();
}

Value* MlirToRuntimeTranslator::AddValue(mlir::Value value) {
  auto res = impl_->value_map.try_emplace(value, ValueRef(new Value));
  CHECK(res.second) << "Duplicate add mlir value [" << DumpToString(value)
                    << "]";
  return res.first->second.get();
}

MlirToRuntimeTranslator::~MlirToRuntimeTranslator() {}

void MlirToRuntimeTranslator::UpdateCurFuncName(const std::string& name) {
  impl_->cur_func_name = std::string(name);
}

MlirToRuntimeTranslator::MlirToRuntimeTranslator(mlir::ModuleOp module,
                                                 CoreRuntimeBuilder* runtime)
    : impl_(new Impl) {
  CHECK(runtime);
  impl_->module = module;
  impl_->runtime = runtime;
}

bool MlirToRuntimeTranslator::EmitBuildShapeOp(mlir::Operation* op) {
  if (op->getName().getStringRef() != "ts.build_shape") return false;

  auto value = op->getAttr("value");

  CHECK(value.isa<mlir::ArrayAttr>());
  auto values = value.cast<mlir::ArrayAttr>().getValue();
  std::vector<int64_t> dims;
  for (auto& attr_v : values) {
    dims.push_back(attr_v.cast<mlir::IntegerAttr>().getInt());
  }
  impl_->op_results[op] = {
      ValueRef(new Value(tensor::TensorShape(llvm::ArrayRef<int64_t>(dims))))};

  return true;
}

bool MlirToRuntimeTranslator::EmitCallOp(mlir::Operation* op,
                                         function_defs_t* function_table) {
  CHECK(op);
  CHECK(function_table);
444
  if (op->getName().getStringRef() != "Infrt.call") return false;
Y
Yan Chunwei 已提交
445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477

  impl_->cur_op =
      impl_->runtime->NewOpExecutable(op->getName().getStringRef().str());

  auto callee = op->getAttr("callee");
  auto callee_name = callee.dyn_cast<mlir::FlatSymbolRefAttr>();

  // process arguments
  for (size_t i = 0; i < op->getNumOperands(); i++) {
    auto operand = op->getOperand(i);
    auto* arg_value = GetValue(operand);

    if (!arg_value) {
      auto upstream_op = operand.getDefiningOp();
      arg_value = GetOpResult(upstream_op);
    }
    CHECK(arg_value) << "No-exist argument value found: "
                     << DumpToString(operand);
    impl_->cur_op->AppendArgument(arg_value);
  }

  // process attribute
  auto& table = function_table ? *function_table : impl_->func_defs;
  {
    // lookup the callee function
    auto it = table.find(callee_name.getValue().str());
    CHECK(it != table.end()) << "can't find function ["
                             << callee_name.getValue().str() << "]";
    auto* function =
        impl_->cur_op->CreateFunctionExecutable(it->second, &impl_->func_defs);
    impl_->cur_op->AppendAttribute(new Value(function));
  }

478 479 480 481 482 483 484 485
  // process results
  llvm::SmallVector<Value*, 4> res_values;
  for (int i = 0, e = op->getNumResults(); i < e; i++) {
    auto res = op->getResult(i);
    res_values.push_back(AddValue(res));
  }
  impl_->cur_op->SetResults(res_values);

Y
Yan Chunwei 已提交
486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583
  VLOG(3) << "Emit call " << callee_name.getValue().str() << " "
          << impl_->cur_op->frame();
  return true;
}

MlirToRuntimeTranslator::MlirToRuntimeTranslator(CoreRuntimeBuilder* runtime)
    : impl_(new Impl) {
  CHECK(runtime);
  impl_->runtime = runtime;
}

Value* MlirToRuntimeTranslator::AddValue(mlir::Value mlir_value, Value* value) {
  auto it = impl_->value_map.try_emplace(mlir_value, ValueRef(value));
  CHECK(it.second) << "duplicate add value " << DumpToString(mlir_value);
  return value;
}

void MlirToRuntimeTranslate(mlir::ModuleOp module,
                            CoreRuntimeBuilder* runtime) {
  MlirToRuntimeTranslator(module, runtime).Run();
}

/**
 * Execute the mlir program in test mode -- print some debug information to
 * stdout.
 */
class MlirProgramTestExecutor : public MlirToRuntimeTranslator {
 public:
  CoreRuntimeBuilder core_runtime;

  MlirProgramTestExecutor(mlir::ModuleOp module, KernelRegistry* registry)
      : MlirToRuntimeTranslator(module, &core_runtime),
        core_runtime(registry),
        registry(registry) {
    CHECK(registry);
  }

  void Run() {
    EmitFunctions();

    CHECK(registry);
    for (auto func_op : impl_->module.getOps<mlir::FuncOp>()) {
      VLOG(3) << "Running function " << func_op.getName().str();
      EmitAndRunFuncWithoutArguments(func_op);
    }
  }

 protected:
  std::unordered_map<std::string, mlir::FuncOp> func_def_table;

  void EmitFunction(mlir::FuncOp op) override {
    CHECK(!impl_->func_defs.count(op.getName().str()))
        << "Duplicate function defition found for function ["
        << op.getName().str();
    impl_->func_defs.emplace(op.getName().str(), op);
  }

 private:
  void EmitAndRunFuncWithoutArguments(mlir::FuncOp func) {
    // print the function name for llvm FileChecker macro, CHECK-LABEL
    std::cout << '@' << func.getName().str() << std::endl;
    if (func.getNumArguments() ==
        0) {  // an entry function, execute it immediately
      VLOG(3) << "executing function " << func.getName().str();
      // Emit and execute each function
      CoreRuntimeBuilder runtime(registry);
      impl_->runtime = &runtime;

      auto& blocks = func.getBlocks();
      CHECK_EQ(blocks.size(), 1UL)
          << "function with more than one block is not supported yet";

      for (auto& op : blocks.front()) {
        if (EmitConstantOp(&op)) continue;
        if (EmitBuildShapeOp(&op)) continue;
        llvm::SmallVector<mlir::Value, 3> results;
        if (EmitReturnOp(&op, &results)) continue;
        if (EmitCallOp(&op, &impl_->func_defs)) continue;
        if (EmitGeneralOp(&op)) continue;
        LOG(FATAL) << "Not supported op: " << DumpToString(op);
      }

      runtime.Execute();

    } else {
      VLOG(2) << "get an callable function: " << func.getName().str();
    }
  }

 private:
  KernelRegistry* registry{};
};

void TestMlir(mlir::ModuleOp module, KernelRegistry* registry) {
  MlirProgramTestExecutor execute(module, registry);
  execute.Run();
}

584 585
}  // namespace host_context
}  // namespace infrt