mlir_to_runtime_translate.cc 18.9 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/infrt/host_context/mlir_to_runtime_translate.h"

#include <llvm/Support/SourceMgr.h>
#include <mlir/Dialect/StandardOps/IR/Ops.h>
19 20
#include <mlir/IR/BuiltinOps.h>
#include <mlir/IR/BuiltinTypes.h>
Y
Yan Chunwei 已提交
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43
#include <mlir/IR/Diagnostics.h>
#include <mlir/IR/OperationSupport.h>
#include <mlir/Parser.h>

#include <iostream>
#include <memory>
#include <string>
#include <unordered_map>
#include <utility>
#include <vector>

#include "boost/optional.hpp"
#include "paddle/infrt/common/string.h"
#include "paddle/infrt/dialect/mlir_loader.h"
#include "paddle/infrt/dialect/tensor_shape.h"
#include "paddle/infrt/host_context/core_runtime.h"
#include "paddle/infrt/host_context/kernel_frame.h"
#include "paddle/infrt/host_context/kernel_registry.h"
#include "paddle/infrt/host_context/mlir_function_executable.h"
#include "paddle/infrt/host_context/op_executable.h"
#include "paddle/infrt/host_context/value.h"
#include "paddle/infrt/tensor/tensor_shape.h"

44 45
namespace infrt {
namespace host_context {
Y
Yan Chunwei 已提交
46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76

template <typename T>
std::string DumpToString(T& op) {  // NOLINT
  std::string buffer;
  llvm::raw_string_ostream os(buffer);
  op.print(os);
  os.flush();
  return buffer;
}

struct MlirToRuntimeTranslator::Impl {
  mlir::ModuleOp module;
  // The runtime for a function call.
  CoreRuntimeBuilder* runtime{};
  // The current working op, the translator process the ops one by one, each
  // time it updates `cur_op` here to current op
  // working on.
  OpExecutableBuilder* cur_op{};

  // record the current function name.
  std::string cur_func_name;

  // Name to function definitions.
  std::unordered_map<std::string, mlir::FuncOp> func_defs;

  // Map from an operation to its results.
  std::unordered_map<const mlir::Operation*, std::vector<ValueRef>> op_results;
  llvm::DenseMap<mlir::Value, ValueRef> value_map;
};

bool MlirToRuntimeTranslator::EmitConstantOp(mlir::Operation* op) {
77
  if (!infrt::Startswith(op->getName().getStringRef().str(), "Infrt.constant"))
Y
Yan Chunwei 已提交
78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117
    return false;
  VLOG(3) << "Emitting constant op [" << op->getName().getStringRef().str()
          << "]";

  auto attr = op->getAttr("value");
  if (attr.isa<mlir::FloatAttr>()) {
    if (attr.getType().isF32()) {
      impl_->op_results[op] = {ValueRef(
          static_cast<float>(attr.cast<mlir::FloatAttr>().getValueAsDouble()))};
    } else if (attr.getType().isF64()) {
      impl_->op_results[op] = {ValueRef(static_cast<double>(
          attr.cast<mlir::FloatAttr>().getValueAsDouble()))};
    } else {
      LOG(FATAL) << "Not supported attribute type";
    }
    return true;
  }

  if (attr.isa<mlir::IntegerAttr>()) {
    if (attr.getType().isInteger(32)) {
      impl_->op_results[op] = {ValueRef(
          static_cast<int32_t>(attr.cast<mlir::IntegerAttr>().getSInt()))};
    } else if (attr.getType().isInteger(64)) {
      impl_->op_results[op] = {ValueRef(
          static_cast<int64_t>(attr.cast<mlir::IntegerAttr>().getSInt()))};
    } else if (attr.getType().isInteger(1)) {
      impl_->op_results[op] = {
          ValueRef(static_cast<bool>(attr.cast<mlir::IntegerAttr>().getInt()))};
    } else {
      LOG(FATAL) << "Not supported attribute type";
    }
    return true;
  }

  LOG(FATAL) << "Not supported constant attribute type";
  return true;
}

template <>
boost::optional<int32_t> MlirToRuntimeTranslator::EmitAttribute(
118 119 120 121
    const mlir::Attribute& attr) {
  if (!attr.isa<mlir::IntegerAttr>()) return boost::none;
  if (attr.isa<mlir::IntegerAttr>()) {
    auto val = attr.cast<mlir::IntegerAttr>();
Y
Yan Chunwei 已提交
122 123 124 125 126 127 128 129
    if (val.getType().isInteger(32)) {
      return val.getInt();
    }
  }
  return boost::none;
}
template <>
boost::optional<int64_t> MlirToRuntimeTranslator::EmitAttribute(
130 131 132 133
    const mlir::Attribute& attr) {
  if (!attr.isa<mlir::IntegerAttr>()) return boost::none;
  if (attr.isa<mlir::IntegerAttr>()) {
    auto val = attr.cast<mlir::IntegerAttr>();
Y
Yan Chunwei 已提交
134 135 136 137 138 139 140 141 142 143
    if (val.getType().isInteger(64)) {
      return val.getInt();
    }
  }
  return boost::none;
}

// TODO(Superjomn) Make double and float parsing share some thing.
template <>
boost::optional<float> MlirToRuntimeTranslator::EmitAttribute(
144 145 146 147
    const mlir::Attribute& attr) {
  if (!attr.isa<mlir::FloatAttr>()) return boost::none;
  if (attr.isa<mlir::FloatAttr>()) {
    auto val = attr.cast<mlir::FloatAttr>();
Y
Yan Chunwei 已提交
148 149 150 151 152 153 154
    if (val.getType().isF32()) return val.getValueAsDouble();
  }
  return boost::none;
}

template <>
boost::optional<double> MlirToRuntimeTranslator::EmitAttribute(
155 156 157 158
    const mlir::Attribute& attr) {
  if (!attr.isa<mlir::FloatAttr>()) return boost::none;
  if (attr.isa<mlir::FloatAttr>()) {
    auto val = attr.cast<mlir::FloatAttr>();
Y
Yan Chunwei 已提交
159 160 161 162 163 164 165
    if (val.getType().isF64()) return val.getValueAsDouble();
  }
  return boost::none;
}

template <>
boost::optional<std::string> MlirToRuntimeTranslator::EmitAttribute(
166 167 168
    const mlir::Attribute& attr) {
  if (!attr.isa<mlir::StringAttr>()) return boost::none;
  return attr.cast<mlir::StringAttr>().getValue().str();
Y
Yan Chunwei 已提交
169 170 171 172 173
}

#define PROCESS_ARRAY_INT(type__, bits__)                                      \
  template <>                                                                  \
  boost::optional<std::vector<type__>> MlirToRuntimeTranslator::EmitAttribute( \
174 175 176
      const mlir::Attribute& attr) {                                           \
    if (!attr.isa<mlir::ArrayAttr>()) return boost::none;                      \
    auto array = attr.cast<mlir::ArrayAttr>();                                 \
Y
Yan Chunwei 已提交
177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195
    CHECK(!array.empty());                                                     \
                                                                               \
    if (!array[0].getType().isInteger(bits__)) {                               \
      return boost::none;                                                      \
    }                                                                          \
                                                                               \
    std::vector<type__> res;                                                   \
    for (auto& v : array) {                                                    \
      res.push_back(v.cast<mlir::IntegerAttr>().getInt());                     \
    }                                                                          \
    return res;                                                                \
  }

PROCESS_ARRAY_INT(int16_t, 16);
PROCESS_ARRAY_INT(int32_t, 32);
PROCESS_ARRAY_INT(int64_t, 64);

template <>
boost::optional<std::vector<float>> MlirToRuntimeTranslator::EmitAttribute(
196 197 198
    const mlir::Attribute& attr) {
  if (!attr.isa<mlir::ArrayAttr>()) return boost::none;
  auto array = attr.cast<mlir::ArrayAttr>();
Y
Yan Chunwei 已提交
199 200 201 202 203 204 205 206 207 208 209 210 211
  CHECK(!array.empty());

  if (!array[0].getType().isF32()) return boost::none;

  std::vector<float> res;
  for (auto& v : array) {
    res.push_back(v.cast<mlir::FloatAttr>().getValueAsDouble());
  }
  return res;
}

template <>
boost::optional<std::vector<double>> MlirToRuntimeTranslator::EmitAttribute(
212 213 214
    const mlir::Attribute& attr) {
  if (!attr.isa<mlir::ArrayAttr>()) return boost::none;
  auto array = attr.cast<mlir::ArrayAttr>();
Y
Yan Chunwei 已提交
215 216 217 218 219 220 221 222 223 224 225 226
  CHECK(!array.empty());

  if (!array[0].getType().isF64()) return boost::none;

  std::vector<double> res;
  for (auto& v : array) {
    res.push_back(v.cast<mlir::FloatAttr>().getValueAsDouble());
  }
  return res;
}

static bool IsReturn(mlir::Operation* op) {
227
  return op->getName().getStringRef() == "Infrt.return";
Y
Yan Chunwei 已提交
228 229 230 231 232 233 234 235 236 237 238 239 240
}

bool MlirToRuntimeTranslator::EmitGeneralOp(mlir::Operation* op) {
  CHECK(impl_->runtime);
  impl_->cur_op =
      impl_->runtime->NewOpExecutable(op->getName().getStringRef().str());

  VLOG(3) << "processing general op : " << op->getName().getStringRef().str();

  // process operands
  for (int i = 0, e = op->getNumOperands(); i < e; i++) {
    // function argument as value
    auto operand = op->getOperand(i);
241 242
    /// if (operand.getKind() == mlir::Value::Kind::BlockArgument) {
    if (operand.isa<mlir::BlockArgument>()) {
Y
Yan Chunwei 已提交
243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288
      mlir::BlockArgument arg = operand.dyn_cast<mlir::BlockArgument>();
      Value* arg_value = GetValue(arg);
      impl_->cur_op->AppendArgument(arg_value);
      VLOG(3) << "* op mlir operand: " << DumpToString(arg) << " "
              << GetValue(arg);
      continue;
    }

    // normal value
    Value* arg_value = GetValue(operand);
    if (!arg_value) {
      auto upstream_op = operand.getDefiningOp();
      arg_value = GetOpResult(upstream_op);
    }
    CHECK(arg_value) << "No-exist argument value found: "
                     << DumpToString(operand);
    impl_->cur_op->AppendArgument(arg_value);

    VLOG(3) << "* op mlir operand: " << DumpToString(operand) << " "
            << GetValue(operand) << " vs " << arg_value;
  }

  // process results
  llvm::SmallVector<Value*, 4> res_values;
  for (int i = 0, e = op->getNumResults(); i < e; i++) {
    auto res = op->getResult(i);
    res_values.push_back(AddValue(res));

    VLOG(3) << "* op mlir res: " << DumpToString(res) << " " << GetValue(res);
  }
  impl_->cur_op->SetResults(res_values);

#ifdef INFRT_DEBUG
  {
    VLOG(3) << "check result";
    for (int i = 0; i < impl_->cur_op->frame().GetNumResults(); i++) {
      VLOG(3) << "+ res value: " << impl_->cur_op->frame().GetResults()[i];
    }
  }
#endif

  // process attributes
  auto attrs = op->getAttrs();

  for (size_t i = 0; i < attrs.size(); i++) {
    auto& attr = attrs[i];
289
    if (auto v = EmitAttribute<int32_t>(attr.getValue())) {
Y
Yan Chunwei 已提交
290
      impl_->cur_op->AppendAttribute(new Value(*v));
291
    } else if (auto v = EmitAttribute<int64_t>(attr.getValue())) {
Y
Yan Chunwei 已提交
292
      impl_->cur_op->AppendAttribute(new Value(*v));
293
    } else if (auto v = EmitAttribute<float>(attr.getValue())) {
Y
Yan Chunwei 已提交
294
      impl_->cur_op->AppendAttribute(new Value(*v));
295
    } else if (auto v = EmitAttribute<double>(attr.getValue())) {
Y
Yan Chunwei 已提交
296
      impl_->cur_op->AppendAttribute(new Value(*v));
297
    } else if (auto v = EmitAttribute<std::string>(attr.getValue())) {
Y
Yan Chunwei 已提交
298
      impl_->cur_op->AppendAttribute(new Value(std::move(*v)));
299
    } else if (auto v = EmitAttribute<std::vector<int16_t>>(attr.getValue())) {
Y
Yan Chunwei 已提交
300
      impl_->cur_op->AppendAttribute(new Value(std::move(*v)));
301
    } else if (auto v = EmitAttribute<std::vector<int32_t>>(attr.getValue())) {
Y
Yan Chunwei 已提交
302
      impl_->cur_op->AppendAttribute(new Value(std::move(*v)));
303
    } else if (auto v = EmitAttribute<std::vector<int64_t>>(attr.getValue())) {
Y
Yan Chunwei 已提交
304
      impl_->cur_op->AppendAttribute(new Value(std::move(*v)));
305
    } else if (auto v = EmitAttribute<std::vector<float>>(attr.getValue())) {
Y
Yan Chunwei 已提交
306
      impl_->cur_op->AppendAttribute(new Value(std::move(*v)));
307
    } else if (auto v = EmitAttribute<std::vector<double>>(attr.getValue())) {
Y
Yan Chunwei 已提交
308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335
      impl_->cur_op->AppendAttribute(new Value(std::move(*v)));
    } else {
      LOG(FATAL) << "Not supported attribute type";
    }
  }

  // process regions, we treat regions as attribute.
  auto num_regions = op->getNumRegions();
  if (num_regions > 0) {
    CHECK_EQ(num_regions, 1UL)
        << "op with more than one region is not supported yet.";
    auto& region = op->getRegions().front();
    auto num_blocks = region.getBlocks().size();
    CHECK_EQ(num_blocks, 1UL)
        << "region with more than one block is not supported yet.";

    // process arguments
    llvm::SmallVector<mlir::Type, 4> inputs;
    auto& block = region.getBlocks().front();
    for (auto arg : block.getArguments()) inputs.push_back(arg.getType());

    // process results
    // NOTE: if an op contains a region, we simply ignore the region's return
    // values,
    //       or its return values will conflict with op's return values.
    llvm::SmallVector<mlir::Type, 0> results;

    auto func_type =
336
        mlir::FunctionType::get(region.getContext(), inputs, results);
Y
Yan Chunwei 已提交
337 338 339 340 341 342 343 344 345 346 347
    auto* function = impl_->cur_op->CreateFunctionExecutable(
        &region, func_type, &impl_->func_defs);
    impl_->cur_op->AppendAttribute(new Value(function));
  }

  return true;
}

bool MlirToRuntimeTranslator::EmitReturnOp(
    mlir::Operation* op, llvm::SmallVectorImpl<mlir::Value>* results) {
  CHECK(results);
348
  if (op->getName().getStringRef() == "Infrt.return") {
Y
Yan Chunwei 已提交
349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420
    for (size_t i = 0; i < op->getNumOperands(); i++) {
      results->push_back(op->getOperand(i));
    }

    return true;
  }
  return false;
}

bool MlirToRuntimeTranslator::EmitFunctions() {
  for (auto func_op : impl_->module.getOps<mlir::FuncOp>()) {
    EmitFunction(func_op);
  }
  return true;
}

void MlirToRuntimeTranslator::EmitFunction(mlir::FuncOp op) {
  impl_->func_defs[op.getName().str()] = op;
}

Value* MlirToRuntimeTranslator::GetOpResult(mlir::Operation* op) {
  auto it = impl_->op_results.find(op);
  return it == impl_->op_results.end() ? nullptr : it->second.front().get();
}

Value* MlirToRuntimeTranslator::GetValue(mlir::Value value) {
  auto it = impl_->value_map.find(value);
  return it == impl_->value_map.end() ? nullptr : it->second.get();
}

Value* MlirToRuntimeTranslator::AddValue(mlir::Value value) {
  auto res = impl_->value_map.try_emplace(value, ValueRef(new Value));
  CHECK(res.second) << "Duplicate add mlir value [" << DumpToString(value)
                    << "]";
  return res.first->second.get();
}

MlirToRuntimeTranslator::~MlirToRuntimeTranslator() {}

void MlirToRuntimeTranslator::UpdateCurFuncName(const std::string& name) {
  impl_->cur_func_name = std::string(name);
}

MlirToRuntimeTranslator::MlirToRuntimeTranslator(mlir::ModuleOp module,
                                                 CoreRuntimeBuilder* runtime)
    : impl_(new Impl) {
  CHECK(runtime);
  impl_->module = module;
  impl_->runtime = runtime;
}

bool MlirToRuntimeTranslator::EmitBuildShapeOp(mlir::Operation* op) {
  if (op->getName().getStringRef() != "ts.build_shape") return false;

  auto value = op->getAttr("value");

  CHECK(value.isa<mlir::ArrayAttr>());
  auto values = value.cast<mlir::ArrayAttr>().getValue();
  std::vector<int64_t> dims;
  for (auto& attr_v : values) {
    dims.push_back(attr_v.cast<mlir::IntegerAttr>().getInt());
  }
  impl_->op_results[op] = {
      ValueRef(new Value(tensor::TensorShape(llvm::ArrayRef<int64_t>(dims))))};

  return true;
}

bool MlirToRuntimeTranslator::EmitCallOp(mlir::Operation* op,
                                         function_defs_t* function_table) {
  CHECK(op);
  CHECK(function_table);
421
  if (op->getName().getStringRef() != "Infrt.call") return false;
Y
Yan Chunwei 已提交
422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560

  impl_->cur_op =
      impl_->runtime->NewOpExecutable(op->getName().getStringRef().str());

  auto callee = op->getAttr("callee");
  auto callee_name = callee.dyn_cast<mlir::FlatSymbolRefAttr>();

  // process arguments
  for (size_t i = 0; i < op->getNumOperands(); i++) {
    auto operand = op->getOperand(i);
    auto* arg_value = GetValue(operand);

    if (!arg_value) {
      auto upstream_op = operand.getDefiningOp();
      arg_value = GetOpResult(upstream_op);
    }
    CHECK(arg_value) << "No-exist argument value found: "
                     << DumpToString(operand);
    impl_->cur_op->AppendArgument(arg_value);
  }

  // process results
  llvm::SmallVector<Value*, 4> res_values;
  for (int i = 0, e = op->getNumResults(); i < e; i++) {
    auto res = op->getResult(i);
    res_values.push_back(AddValue(res));
  }
  impl_->cur_op->SetResults(res_values);

  // process attribute
  auto& table = function_table ? *function_table : impl_->func_defs;
  {
    // lookup the callee function
    auto it = table.find(callee_name.getValue().str());
    CHECK(it != table.end()) << "can't find function ["
                             << callee_name.getValue().str() << "]";
    auto* function =
        impl_->cur_op->CreateFunctionExecutable(it->second, &impl_->func_defs);
    impl_->cur_op->AppendAttribute(new Value(function));
  }

  VLOG(3) << "Emit call " << callee_name.getValue().str() << " "
          << impl_->cur_op->frame();
  return true;
}

MlirToRuntimeTranslator::MlirToRuntimeTranslator(CoreRuntimeBuilder* runtime)
    : impl_(new Impl) {
  CHECK(runtime);
  impl_->runtime = runtime;
}

Value* MlirToRuntimeTranslator::AddValue(mlir::Value mlir_value, Value* value) {
  auto it = impl_->value_map.try_emplace(mlir_value, ValueRef(value));
  CHECK(it.second) << "duplicate add value " << DumpToString(mlir_value);
  return value;
}

void MlirToRuntimeTranslate(mlir::ModuleOp module,
                            CoreRuntimeBuilder* runtime) {
  MlirToRuntimeTranslator(module, runtime).Run();
}

/**
 * Execute the mlir program in test mode -- print some debug information to
 * stdout.
 */
class MlirProgramTestExecutor : public MlirToRuntimeTranslator {
 public:
  CoreRuntimeBuilder core_runtime;

  MlirProgramTestExecutor(mlir::ModuleOp module, KernelRegistry* registry)
      : MlirToRuntimeTranslator(module, &core_runtime),
        core_runtime(registry),
        registry(registry) {
    CHECK(registry);
  }

  void Run() {
    EmitFunctions();

    CHECK(registry);
    for (auto func_op : impl_->module.getOps<mlir::FuncOp>()) {
      VLOG(3) << "Running function " << func_op.getName().str();
      EmitAndRunFuncWithoutArguments(func_op);
    }
  }

 protected:
  std::unordered_map<std::string, mlir::FuncOp> func_def_table;

  void EmitFunction(mlir::FuncOp op) override {
    CHECK(!impl_->func_defs.count(op.getName().str()))
        << "Duplicate function defition found for function ["
        << op.getName().str();
    impl_->func_defs.emplace(op.getName().str(), op);
  }

 private:
  void EmitAndRunFuncWithoutArguments(mlir::FuncOp func) {
    // print the function name for llvm FileChecker macro, CHECK-LABEL
    std::cout << '@' << func.getName().str() << std::endl;
    if (func.getNumArguments() ==
        0) {  // an entry function, execute it immediately
      VLOG(3) << "executing function " << func.getName().str();
      // Emit and execute each function
      CoreRuntimeBuilder runtime(registry);
      impl_->runtime = &runtime;

      auto& blocks = func.getBlocks();
      CHECK_EQ(blocks.size(), 1UL)
          << "function with more than one block is not supported yet";

      for (auto& op : blocks.front()) {
        if (EmitConstantOp(&op)) continue;
        if (EmitBuildShapeOp(&op)) continue;
        llvm::SmallVector<mlir::Value, 3> results;
        if (EmitReturnOp(&op, &results)) continue;
        if (EmitCallOp(&op, &impl_->func_defs)) continue;
        if (EmitGeneralOp(&op)) continue;
        LOG(FATAL) << "Not supported op: " << DumpToString(op);
      }

      runtime.Execute();

    } else {
      VLOG(2) << "get an callable function: " << func.getName().str();
    }
  }

 private:
  KernelRegistry* registry{};
};

void TestMlir(mlir::ModuleOp module, KernelRegistry* registry) {
  MlirProgramTestExecutor execute(module, registry);
  execute.Run();
}

561 562
}  // namespace host_context
}  // namespace infrt