pipeline_optimizer.py 11.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
#   Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and

14
from __future__ import print_function
15
from __future__ import division
16 17 18 19

import paddle.fluid as fluid
from paddle.fluid import core, unique_name
from ..base.private_helper_function import wait_server_ready
20 21
from paddle.fluid.optimizer import PipelineOptimizer as PO
from .meta_optimizer_base import MetaOptimizerBase
22
from .common import OpRole, OP_ROLE_KEY, OP_ROLE_VAR_KEY, CollectiveHelper, is_update_op, is_loss_grad_op, is_backward_op, is_optimizer_op
23 24


25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45
def _get_node_num(endpoints):
    ss = set()
    for ep in endpoints:
        ip = ep.split(":")[0].strip()
        if ip not in ss:
            ss.add(ip)
    return len(ss)


class PipelineHelper(object):
    def __init__(self, role_maker, wait_port='6174'):
        self.wait_port = wait_port
        self.role_maker = role_maker

    def update_startup_program(self,
                               startup_program=None,
                               inner_parallelism=None):
        self.startup_program = startup_program

        nranks = self.role_maker._worker_num()
        rank = self.role_maker._worker_index()
46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
        endpoints = self.role_maker._get_trainer_endpoints()
        current_endpoint = endpoints[rank]
        node_num = _get_node_num(endpoints)
        assert nranks % node_num == 0

        # Create ring 0 for all gpus in the same pipeline
        if inner_parallelism > 1:
            pipeline_rank = rank % inner_parallelism
            pipeline_id = rank // inner_parallelism
            start_index = pipeline_id * inner_parallelism
            pipeline_endpoints = endpoints[start_index:start_index +
                                           inner_parallelism]
            self._init_communicator(self.startup_program, current_endpoint,
                                    pipeline_endpoints, pipeline_rank, 0,
                                    self.wait_port)
61 62 63

        pipeline_num = len(endpoints) // inner_parallelism
        if pipeline_num == 1: return
64
        # Create rings for gpus with the same pipeline id for data parallel
65
        eps = []
66 67
        pipeline_rank = rank % inner_parallelism
        ring_id = pipeline_rank + 1
68
        for i in range(pipeline_num):
69 70 71
            eps.append(endpoints[i * inner_parallelism + pipeline_rank])
        # rank in a ring of gpus with the same pipeline id for data parallel
        dp_rank = rank // inner_parallelism
72
        self._init_communicator(self.startup_program, current_endpoint, eps,
73
                                dp_rank, ring_id, self.wait_port)
74
        self._broadcast_params(ring_id)
75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96

    def _init_communicator(self, program, current_endpoint, endpoints, rank,
                           ring_id, wait_port):
        nranks = len(endpoints)
        other_endpoints = endpoints[:]
        other_endpoints.remove(current_endpoint)
        if rank == 0 and wait_port:
            wait_server_ready(other_endpoints)

        block = program.global_block()
        nccl_id_var = block.create_var(
            name=unique_name.generate('nccl_id'),
            persistable=True,
            type=core.VarDesc.VarType.RAW)
        block.append_op(
            type='c_gen_nccl_id',
            inputs={},
            outputs={'Out': nccl_id_var},
            attrs={
                'rank': rank,
                'endpoint': current_endpoint,
                'other_endpoints': other_endpoints,
97
                OP_ROLE_KEY: OpRole.Forward,
98 99 100 101 102 103 104 105 106 107 108 109
            })
        block.append_op(
            type='c_comm_init',
            inputs={'X': nccl_id_var},
            outputs={},
            attrs={
                'nranks': nranks,
                'rank': rank,
                'ring_id': ring_id,
                OP_ROLE_KEY: OpRole.Forward,
            })

110
    def _broadcast_params(self, ring_id):
111
        block = self.startup_program.global_block()
112 113 114 115
        for var_name in block.vars:
            if "nccl_id" in var_name: continue
            param = block.var(var_name)
            if not param.persistable:
116 117 118 119 120 121 122 123 124 125 126 127
                continue

            block.append_op(
                type='c_broadcast',
                inputs={'X': param},
                outputs={'Out': param},
                attrs={
                    'ring_id': ring_id,
                    'root': 0,
                    OP_ROLE_KEY: OpRole.Forward
                })

128 129 130 131 132 133
        block.append_op(
            type='c_sync_comm_stream',
            inputs={'X': param},
            outputs={'Out': param},
            attrs={'ring_id': ring_id,
                   OP_ROLE_KEY: OpRole.Forward})
134 135


136 137 138 139 140 141
class PipelineOptimizer(MetaOptimizerBase):
    def __init__(self, optimizer):
        super(PipelineOptimizer, self).__init__(optimizer)
        self.inner_opt = optimizer
        # we do not allow meta optimizer to be inner optimizer currently
        self.meta_optimizers_white_list = []
142
        self.meta_optimizers_black_list = ["GraphExecutionOptimizer", ]
143 144 145 146 147

    def _set_basic_info(self, loss, role_maker, user_defined_optimizer,
                        user_defined_strategy):
        super(PipelineOptimizer, self)._set_basic_info(
            loss, role_maker, user_defined_optimizer, user_defined_strategy)
148 149
        self.num_microbatches = user_defined_strategy.pipeline_configs[
            'micro_batch']
150 151

    def _can_apply(self):
152 153 154
        if not self.role_maker._is_collective:
            return False

155 156 157 158 159 160
        if self.user_defined_strategy.pipeline == True:
            return True
        return False

    def _disable_strategy(self, dist_strategy):
        dist_strategy.pipeline = False
161
        dist_strategy.pipeline_configs = {}
162

163
    def _enable_strategy(self, dist_strategy, context):
164 165 166
        dist_strategy.pipeline = True
        dist_strategy.pipeline_configs = {"micro_batch": 1, }

167 168 169 170 171
    def minimize_impl(self,
                      loss,
                      startup_program=None,
                      parameter_list=None,
                      no_grad_set=None):
172 173
        endpoints = self.role_maker._get_trainer_endpoints()
        current_endpoint = endpoints[self.role_maker._worker_index()]
174
        self.wrapped_opt = PO(self.inner_opt,
175
                              num_microbatches=self.num_microbatches)
176 177
        node_num = _get_node_num(endpoints)
        gpus_per_node = len(endpoints) // node_num
178 179 180 181
        self.startup_program = startup_program
        if startup_program is None:
            self.startup_program = fluid.default_startup_program()

182 183 184
        self.rank = self.role_maker._worker_index()
        self.nranks = self.role_maker._worker_num()
        assert self.nranks % node_num == 0
185

186 187 188 189
        loss.block.program._pipeline_opt = dict()
        loss.block.program._pipeline_opt['local_rank'] = self.rank
        optimize_ops, params_grads, prog_list = self.wrapped_opt.minimize(
            loss, startup_program, parameter_list, no_grad_set)
190
        assert prog_list
191

192 193
        self.main_program_list = prog_list
        self.main_program = loss.block.program
194 195
        self.inner_parallelism = loss.block.program._pipeline_opt[
            'inner_parallelism']
196
        assert self.nranks % self.inner_parallelism == 0
197

198 199 200 201
        pipeline_helper = PipelineHelper(self.role_maker)
        pipeline_helper.update_startup_program(
            self.startup_program._pipeline_opt["startup_program"],
            self.inner_parallelism)
202

203 204
        pipeline_num = self.nranks // self.inner_parallelism
        self._transpile_main_program(loss, pipeline_num, self.inner_parallelism)
205
        return optimize_ops, params_grads
206

207 208 209 210
    def _transpile_main_program(self, loss, pipeline_num, inner_parallelism):
        if pipeline_num <= 1: return
        self._insert_loss_grad_ops(loss, pipeline_num)
        for ring_id in range(1, inner_parallelism + 1):
211 212
            self._insert_allreduce_ops(ring_id)

213
    def _insert_loss_grad_ops(self, loss, pipeline_num):
214 215 216 217
        """
        In order to keep the learning rate consistent in different numbers of
        training workers, we scale the loss grad by the number of workers
        """
218
        block = self.main_program_list[-1]['program'].global_block()
219 220 221 222 223 224 225 226 227
        for idx, op in reversed(list(enumerate(block.ops))):
            if is_loss_grad_op(op):
                loss_grad_var = block.vars[op.output_arg_names[0]]
                block._insert_op(
                    idx + 1,
                    type='scale',
                    inputs={'X': loss_grad_var},
                    outputs={'Out': loss_grad_var},
                    attrs={
228
                        'scale': 1.0 / pipeline_num,
229 230 231 232
                        OP_ROLE_KEY: OpRole.Backward
                    })

    def _insert_allreduce_ops(self, ring_id):
233
        block = self.main_program_list[ring_id - 1]['program'].global_block()
234 235 236 237
        origin_block = self.main_program.global_block()
        grad = None
        for idx, op in reversed(list(enumerate(block.ops))):
            if is_backward_op(op) and \
238
                    OP_ROLE_VAR_KEY in op.attr_names:
239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261
                op_role_var = op.all_attrs()[OP_ROLE_VAR_KEY]
                if len(op_role_var) == 0:
                    continue
                assert len(op_role_var) % 2 == 0
                offset = idx
                for i in range(0, len(op_role_var), 2):
                    param = block.vars[op_role_var[i]]
                    grad = block.vars[op_role_var[i + 1]]
                    origin_param = origin_block.vars[op_role_var[i]]
                    if origin_param.is_distributed:
                        continue
                    if offset == idx:
                        offset += 1
                        block._insert_op(
                            offset,
                            type='c_sync_calc_stream',
                            inputs={'X': grad},
                            outputs={'Out': grad},
                            attrs={OP_ROLE_KEY: OpRole.Backward})
                        offset += 1

                    block._insert_op(
                        offset,
262
                        type='c_allreduce_sum',
263 264 265 266 267 268 269 270 271 272 273 274 275
                        inputs={'X': grad},
                        outputs={'Out': grad},
                        attrs={
                            'ring_id': ring_id,
                            OP_ROLE_KEY: OpRole.Backward
                        })

        if grad is None:
            return

        for idx, op in enumerate(block.ops):
            if is_optimizer_op(op):
                block._insert_op(
276
                    idx,
277 278 279 280 281 282
                    type='c_sync_comm_stream',
                    inputs={'X': grad},
                    outputs={'Out': grad},
                    attrs={'ring_id': ring_id,
                           OP_ROLE_KEY: OpRole.Backward})
            break