single_infer.py 15.9 KB
Newer Older
X
fix  
xjqbest 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Training use fluid with one node only.
"""

from __future__ import print_function

import time
import logging
import os
M
malin10 已提交
23 24
import json
import numpy as np
X
fix  
xjqbest 已提交
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52
import paddle.fluid as fluid

from paddlerec.core.trainers.transpiler_trainer import TranspileTrainer
from paddlerec.core.utils import envs
from paddlerec.core.reader import SlotReader
from paddlerec.core.utils import dataloader_instance

logging.basicConfig(format="%(asctime)s - %(levelname)s - %(message)s")
logger = logging.getLogger("fluid")
logger.setLevel(logging.INFO)


class SingleInfer(TranspileTrainer):
    def __init__(self, config=None):
        super(TranspileTrainer, self).__init__(config)
        self._env = self._config
        device = envs.get_global_env("device")
        if device == 'gpu':
            self._place = fluid.CUDAPlace(0)
        elif device == 'cpu':
            self._place = fluid.CPUPlace()
        self._exe = fluid.Executor(self._place)
        self.processor_register()
        self._model = {}
        self._dataset = {}
        envs.set_global_envs(self._config)
        envs.update_workspace()
        self._runner_name = envs.get_global_env("mode")
X
fix  
xjqbest 已提交
53 54 55 56 57 58
        device = envs.get_global_env("runner." + self._runner_name + ".device")
        if device == 'gpu':
            self._place = fluid.CUDAPlace(0)
        elif device == 'cpu':
            self._place = fluid.CPUPlace()
        self._exe = fluid.Executor(self._place)
X
fix  
xjqbest 已提交
59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76

    def processor_register(self):
        self.regist_context_processor('uninit', self.instance)
        self.regist_context_processor('init_pass', self.init)
        self.regist_context_processor('startup_pass', self.startup)
        self.regist_context_processor('train_pass', self.executor_train)
        self.regist_context_processor('terminal_pass', self.terminal)

    def instance(self, context):
        context['status'] = 'init_pass'

    def _get_dataset(self, dataset_name):
        name = "dataset." + dataset_name + "."
        thread_num = envs.get_global_env(name + "thread_num")
        batch_size = envs.get_global_env(name + "batch_size")
        reader_class = envs.get_global_env(name + "data_converter")
        abs_dir = os.path.dirname(os.path.abspath(__file__))
        reader = os.path.join(abs_dir, '../utils', 'dataset_instance.py')
X
fix  
xjqbest 已提交
77 78 79
        sparse_slots = envs.get_global_env(name + "sparse_slots", "").strip()
        dense_slots = envs.get_global_env(name + "dense_slots", "").strip()
        if sparse_slots == "" and dense_slots == "":
X
fix  
xjqbest 已提交
80 81 82
            pipe_cmd = "python {} {} {} {}".format(reader, reader_class,
                                                   "TRAIN", self._config_yaml)
        else:
X
fix  
xjqbest 已提交
83 84 85 86
            if sparse_slots == "":
                sparse_slots = "?"
            if dense_slots == "":
                dense_slots = "?"
X
fix  
xjqbest 已提交
87 88 89
            padding = envs.get_global_env(name + "padding", 0)
            pipe_cmd = "python {} {} {} {} {} {} {} {}".format(
                reader, "slot", "slot", self._config_yaml, "fake", \
X
fix  
xjqbest 已提交
90
                sparse_slots.replace(" ", "?"), dense_slots.replace(" ", "?"), str(padding))
X
fix  
xjqbest 已提交
91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114

        dataset = fluid.DatasetFactory().create_dataset()
        dataset.set_batch_size(envs.get_global_env(name + "batch_size"))
        dataset.set_pipe_command(pipe_cmd)
        train_data_path = envs.get_global_env(name + "data_path")
        file_list = [
            os.path.join(train_data_path, x)
            for x in os.listdir(train_data_path)
        ]
        dataset.set_filelist(file_list)
        for model_dict in self._env["phase"]:
            if model_dict["dataset_name"] == dataset_name:
                model = self._model[model_dict["name"]][3]
                inputs = model._infer_data_var
                dataset.set_use_var(inputs)
                break
        return dataset

    def _get_dataloader(self, dataset_name, dataloader):
        name = "dataset." + dataset_name + "."
        thread_num = envs.get_global_env(name + "thread_num")
        batch_size = envs.get_global_env(name + "batch_size")
        reader_class = envs.get_global_env(name + "data_converter")
        abs_dir = os.path.dirname(os.path.abspath(__file__))
X
fix  
xjqbest 已提交
115 116 117
        sparse_slots = envs.get_global_env(name + "sparse_slots", "").strip()
        dense_slots = envs.get_global_env(name + "dense_slots", "").strip()
        if sparse_slots == "" and dense_slots == "":
X
fix  
xjqbest 已提交
118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171
            reader = dataloader_instance.dataloader_by_name(
                reader_class, dataset_name, self._config_yaml)
            reader_class = envs.lazy_instance_by_fliename(reader_class,
                                                          "TrainReader")
            reader_ins = reader_class(self._config_yaml)
        else:
            reader = dataloader_instance.slotdataloader_by_name(
                "", dataset_name, self._config_yaml)
            reader_ins = SlotReader(self._config_yaml)
        if hasattr(reader_ins, 'generate_batch_from_trainfiles'):
            dataloader.set_sample_list_generator(reader)
        else:
            dataloader.set_sample_generator(reader, batch_size)
        return dataloader

    def _create_dataset(self, dataset_name):
        name = "dataset." + dataset_name + "."
        sparse_slots = envs.get_global_env(name + "sparse_slots")
        dense_slots = envs.get_global_env(name + "dense_slots")
        thread_num = envs.get_global_env(name + "thread_num")
        batch_size = envs.get_global_env(name + "batch_size")
        type_name = envs.get_global_env(name + "type")
        if envs.get_platform() != "LINUX":
            print("platform ", envs.get_platform(),
                  " change reader to DataLoader")
            type_name = "DataLoader"
        padding = 0

        if type_name == "DataLoader":
            return None
        else:
            return self._get_dataset(dataset_name)

    def init(self, context):
        for model_dict in self._env["phase"]:
            self._model[model_dict["name"]] = [None] * 5
            train_program = fluid.Program()
            startup_program = fluid.Program()
            scope = fluid.Scope()
            dataset_name = model_dict["dataset_name"]
            opt_name = envs.get_global_env("hyper_parameters.optimizer.class")
            opt_lr = envs.get_global_env(
                "hyper_parameters.optimizer.learning_rate")
            opt_strategy = envs.get_global_env(
                "hyper_parameters.optimizer.strategy")
            with fluid.program_guard(train_program, startup_program):
                with fluid.unique_name.guard():
                    with fluid.scope_guard(scope):
                        model_path = model_dict["model"].replace(
                            "{workspace}",
                            envs.path_adapter(self._env["workspace"]))
                        model = envs.lazy_instance_by_fliename(
                            model_path, "Model")(self._env)
                        model._infer_data_var = model.input_data(
M
malin10 已提交
172
                            is_infer=True,
X
fix  
xjqbest 已提交
173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199
                            dataset_name=model_dict["dataset_name"])
                        if envs.get_global_env("dataset." + dataset_name +
                                               ".type") == "DataLoader":
                            model._init_dataloader(is_infer=True)
                            self._get_dataloader(dataset_name,
                                                 model._data_loader)
                        model.net(model._infer_data_var, True)
            self._model[model_dict["name"]][0] = train_program
            self._model[model_dict["name"]][1] = startup_program
            self._model[model_dict["name"]][2] = scope
            self._model[model_dict["name"]][3] = model
            self._model[model_dict["name"]][4] = train_program.clone()

        for dataset in self._env["dataset"]:
            if dataset["type"] != "DataLoader":
                self._dataset[dataset["name"]] = self._create_dataset(dataset[
                    "name"])

        context['status'] = 'startup_pass'

    def startup(self, context):
        for model_dict in self._env["phase"]:
            with fluid.scope_guard(self._model[model_dict["name"]][2]):
                self._exe.run(self._model[model_dict["name"]][1])
        context['status'] = 'train_pass'

    def executor_train(self, context):
X
fix  
xjqbest 已提交
200 201
        epochs = int(
            envs.get_global_env("runner." + self._runner_name + ".epochs"))
X
fix  
xjqbest 已提交
202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232
        for j in range(epochs):
            for model_dict in self._env["phase"]:
                if j == 0:
                    with fluid.scope_guard(self._model[model_dict["name"]][2]):
                        train_prog = self._model[model_dict["name"]][0]
                        startup_prog = self._model[model_dict["name"]][1]
                        with fluid.program_guard(train_prog, startup_prog):
                            self.load()
                reader_name = model_dict["dataset_name"]
                name = "dataset." + reader_name + "."
                begin_time = time.time()
                if envs.get_global_env(name + "type") == "DataLoader":
                    self._executor_dataloader_train(model_dict)
                else:
                    self._executor_dataset_train(model_dict)
                with fluid.scope_guard(self._model[model_dict["name"]][2]):
                    train_prog = self._model[model_dict["name"]][4]
                    startup_prog = self._model[model_dict["name"]][1]
                    with fluid.program_guard(train_prog, startup_prog):
                        self.save(j)
                end_time = time.time()
                seconds = end_time - begin_time
            print("epoch {} done, time elasped: {}".format(j, seconds))
        context['status'] = "terminal_pass"

    def _executor_dataset_train(self, model_dict):
        reader_name = model_dict["dataset_name"]
        model_name = model_dict["name"]
        model_class = self._model[model_name][3]
        fetch_vars = []
        fetch_alias = []
X
fix  
xjqbest 已提交
233 234
        fetch_period = int(
            envs.get_global_env("runner." + self._runner_name +
X
fix  
xjqbest 已提交
235
                                ".print_interval", 20))
X
fix  
xjqbest 已提交
236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263
        metrics = model_class.get_infer_results()
        if metrics:
            fetch_vars = metrics.values()
            fetch_alias = metrics.keys()
        scope = self._model[model_name][2]
        program = self._model[model_name][0]
        reader = self._dataset[reader_name]
        with fluid.scope_guard(scope):
            self._exe.infer_from_dataset(
                program=program,
                dataset=reader,
                fetch_list=fetch_vars,
                fetch_info=fetch_alias,
                print_period=fetch_period)

    def _executor_dataloader_train(self, model_dict):
        reader_name = model_dict["dataset_name"]
        model_name = model_dict["name"]
        model_class = self._model[model_name][3]
        program = self._model[model_name][0].clone()
        fetch_vars = []
        fetch_alias = []
        metrics = model_class.get_infer_results()
        if metrics:
            fetch_vars = metrics.values()
            fetch_alias = metrics.keys()
        metrics_varnames = []
        metrics_format = []
X
fix  
xjqbest 已提交
264 265
        fetch_period = int(
            envs.get_global_env("runner." + self._runner_name +
X
fix  
xjqbest 已提交
266
                                ".print_interval", 20))
X
fix  
xjqbest 已提交
267
        metrics_format.append("{}: {{}}".format("batch"))
M
malin10 已提交
268
        metrics_indexes = dict()
X
fix  
xjqbest 已提交
269 270
        for name, var in metrics.items():
            metrics_varnames.append(var.name)
M
malin10 已提交
271
            metrics_indexes[var.name] = len(metrics_varnames) - 1
X
fix  
xjqbest 已提交
272 273 274 275 276 277 278
            metrics_format.append("{}: {{}}".format(name))
        metrics_format = ", ".join(metrics_format)

        reader = self._model[model_name][3]._data_loader
        reader.start()
        batch_id = 0
        scope = self._model[model_name][2]
M
malin10 已提交
279 280

        infer_results = []
X
fix  
xjqbest 已提交
281 282 283 284
        with fluid.scope_guard(scope):
            try:
                while True:
                    metrics_rets = self._exe.run(program=program,
M
malin10 已提交
285 286
                                                 fetch_list=metrics_varnames,
                                                 return_numpy=False)
X
fix  
xjqbest 已提交
287 288 289
                    metrics = [batch_id]
                    metrics.extend(metrics_rets)

M
malin10 已提交
290 291 292 293 294 295
                    batch_infer_result = {}
                    for k, v in metrics_indexes.items():
                        batch_infer_result[k] = np.array(metrics_rets[
                            v]).tolist()
                    infer_results.append(batch_infer_result)

X
fix  
xjqbest 已提交
296 297 298 299 300
                    if batch_id % fetch_period == 0 and batch_id != 0:
                        print(metrics_format.format(*metrics))
                    batch_id += 1
            except fluid.core.EOFException:
                reader.reset()
M
malin10 已提交
301 302
        with open(model_dict['save_path'], 'w') as fout:
            json.dump(infer_results, fout)
X
fix  
xjqbest 已提交
303 304 305 306 307 308

    def terminal(self, context):
        context['is_exit'] = True

    def load(self, is_fleet=False):
        name = "runner." + self._runner_name + "."
X
fix  
xjqbest 已提交
309
        dirname = envs.get_global_env(name + "init_model_path", None)
X
fix  
xjqbest 已提交
310
        if dirname is None or dirname == "":
X
fix  
xjqbest 已提交
311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371
            return
        print("single_infer going to load ", dirname)
        if is_fleet:
            fleet.load_persistables(self._exe, dirname)
        else:
            fluid.io.load_persistables(self._exe, dirname)

    def save(self, epoch_id, is_fleet=False):
        def need_save(epoch_id, epoch_interval, is_last=False):
            if is_last:
                return True
            if epoch_id == -1:
                return False

            return epoch_id % epoch_interval == 0

        def save_inference_model():
            name = "runner." + self._runner_name + "."
            save_interval = int(
                envs.get_global_env(name + "save_inference_interval", -1))
            if not need_save(epoch_id, save_interval, False):
                return
            feed_varnames = envs.get_global_env(
                name + "save_inference_feed_varnames", None)
            fetch_varnames = envs.get_global_env(
                name + "save_inference_fetch_varnames", None)
            if feed_varnames is None or fetch_varnames is None or feed_varnames == "":
                return
            fetch_vars = [
                fluid.default_main_program().global_block().vars[varname]
                for varname in fetch_varnames
            ]
            dirname = envs.get_global_env(name + "save_inference_path", None)

            assert dirname is not None
            dirname = os.path.join(dirname, str(epoch_id))

            if is_fleet:
                fleet.save_inference_model(self._exe, dirname, feed_varnames,
                                           fetch_vars)
            else:
                fluid.io.save_inference_model(dirname, feed_varnames,
                                              fetch_vars, self._exe)

        def save_persistables():
            name = "runner." + self._runner_name + "."
            save_interval = int(
                envs.get_global_env(name + "save_checkpoint_interval", -1))
            if not need_save(epoch_id, save_interval, False):
                return
            dirname = envs.get_global_env(name + "save_checkpoint_path", None)
            if dirname is None or dirname == "":
                return
            dirname = os.path.join(dirname, str(epoch_id))
            if is_fleet:
                fleet.save_persistables(self._exe, dirname)
            else:
                fluid.io.save_persistables(self._exe, dirname)

        save_persistables()
        save_inference_model()