Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
PaddleRec
提交
0085a4f2
P
PaddleRec
项目概览
BaiXuePrincess
/
PaddleRec
与 Fork 源项目一致
Fork自
PaddlePaddle / PaddleRec
通知
1
Star
0
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleRec
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
0085a4f2
编写于
5月 29, 2020
作者:
M
malin10
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
update multiview-simnet
上级
f4ace1bf
变更
11
隐藏空白更改
内联
并排
Showing
11 changed file
with
284 addition
and
395 deletion
+284
-395
core/model.py
core/model.py
+5
-5
core/trainers/single_infer.py
core/trainers/single_infer.py
+1
-0
core/trainers/single_trainer.py
core/trainers/single_trainer.py
+1
-7
core/utils/dataset_instance.py
core/utils/dataset_instance.py
+7
-1
models/match/dssm/config.yaml
models/match/dssm/config.yaml
+2
-1
models/match/multiview-simnet/config.yaml
models/match/multiview-simnet/config.yaml
+65
-41
models/match/multiview-simnet/model.py
models/match/multiview-simnet/model.py
+67
-181
models/recall/gnn/config.yaml
models/recall/gnn/config.yaml
+63
-38
models/recall/gnn/evaluate_reader.py
models/recall/gnn/evaluate_reader.py
+2
-3
models/recall/gnn/model.py
models/recall/gnn/model.py
+70
-115
models/recall/gnn/reader.py
models/recall/gnn/reader.py
+1
-3
未找到文件。
core/model.py
浏览文件 @
0085a4f2
...
...
@@ -149,11 +149,11 @@ class Model(object):
return
optimizer_i
def
optimizer
(
self
):
learning_rate
=
envs
.
get_global_env
(
"hyper_parameters.learning_rate"
,
None
,
self
.
_namespace
)
opt
imizer
=
envs
.
get_global_env
(
"hyper_parameters.optimizer"
,
None
,
self
.
_namespace
)
return
self
.
_build_optimizer
(
opt
imizer
,
learning_rate
)
opt_name
=
envs
.
get_global_env
(
"hyper_parameters.optimizer.class"
)
opt_lr
=
envs
.
get_global_env
(
"hyper_parameters.optimizer.learning_rate"
)
opt
_strategy
=
envs
.
get_global_env
(
"hyper_parameters.optimizer.strategy"
)
return
self
.
_build_optimizer
(
opt
_name
,
opt_lr
,
opt_strategy
)
def
input_data
(
self
,
is_infer
=
False
,
**
kwargs
):
name
=
"dataset."
+
kwargs
.
get
(
"dataset_name"
)
+
"."
...
...
core/trainers/single_infer.py
浏览文件 @
0085a4f2
...
...
@@ -167,6 +167,7 @@ class SingleInfer(TranspileTrainer):
model
=
envs
.
lazy_instance_by_fliename
(
model_path
,
"Model"
)(
self
.
_env
)
model
.
_infer_data_var
=
model
.
input_data
(
is_infer
=
True
,
dataset_name
=
model_dict
[
"dataset_name"
])
if
envs
.
get_global_env
(
"dataset."
+
dataset_name
+
".type"
)
==
"DataLoader"
:
...
...
core/trainers/single_trainer.py
浏览文件 @
0085a4f2
...
...
@@ -147,11 +147,6 @@ class SingleTrainer(TranspileTrainer):
startup_program
=
fluid
.
Program
()
scope
=
fluid
.
Scope
()
dataset_name
=
model_dict
[
"dataset_name"
]
opt_name
=
envs
.
get_global_env
(
"hyper_parameters.optimizer.class"
)
opt_lr
=
envs
.
get_global_env
(
"hyper_parameters.optimizer.learning_rate"
)
opt_strategy
=
envs
.
get_global_env
(
"hyper_parameters.optimizer.strategy"
)
with
fluid
.
program_guard
(
train_program
,
startup_program
):
with
fluid
.
unique_name
.
guard
():
with
fluid
.
scope_guard
(
scope
):
...
...
@@ -168,8 +163,7 @@ class SingleTrainer(TranspileTrainer):
self
.
_get_dataloader
(
dataset_name
,
model
.
_data_loader
)
model
.
net
(
model
.
_data_var
,
False
)
optimizer
=
model
.
_build_optimizer
(
opt_name
,
opt_lr
,
opt_strategy
)
optimizer
=
model
.
optimizer
()
optimizer
.
minimize
(
model
.
_cost
)
self
.
_model
[
model_dict
[
"name"
]][
0
]
=
train_program
self
.
_model
[
model_dict
[
"name"
]][
1
]
=
startup_program
...
...
core/utils/dataset_instance.py
浏览文件 @
0085a4f2
...
...
@@ -14,7 +14,8 @@
from
__future__
import
print_function
import
sys
import
yaml
from
paddlerec.core.utils
import
envs
from
paddlerec.core.utils.envs
import
lazy_instance_by_fliename
from
paddlerec.core.reader
import
SlotReader
...
...
@@ -38,6 +39,11 @@ else:
yaml_abs_path
=
sys
.
argv
[
3
]
with
open
(
yaml_abs_path
,
'r'
)
as
rb
:
config
=
yaml
.
load
(
rb
.
read
(),
Loader
=
yaml
.
FullLoader
)
envs
.
set_global_envs
()
envs
.
update_workspace
()
if
reader_name
!=
"SlotReader"
:
reader_class
=
lazy_instance_by_fliename
(
reader_package
,
reader_name
)
reader
=
reader_class
(
yaml_abs_path
)
...
...
models/match/dssm/config.yaml
浏览文件 @
0085a4f2
...
...
@@ -53,13 +53,14 @@ runner:
save_inference_feed_varnames
:
[
"
query"
,
"
doc_pos"
]
# feed vars of save inference
save_inference_fetch_varnames
:
[
"
cos_sim_0.tmp_0"
]
# fetch vars of save inference
init_model_path
:
"
"
# load model path
fetch_period
:
10
fetch_period
:
2
-
name
:
runner2
class
:
single_infer
# num of epochs
epochs
:
1
# device to run training or infer
device
:
cpu
fetch_period
:
1
init_model_path
:
"
increment/2"
# load model path
# runner will run all the phase in each epoch
...
...
models/match/multiview-simnet/config.yaml
浏览文件 @
0085a4f2
...
...
@@ -11,49 +11,73 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
evaluate
:
workspace
:
"
paddlerec.models.match.multiview-simnet"
reader
:
batch_size
:
2
class
:
"
{workspace}/evaluate_reader.py"
test_data_path
:
"
{workspace}/data/test"
train
:
trainer
:
# for cluster training
strategy
:
"
async"
# workspace
workspace
:
"
paddlerec.models.match.multiview-simnet"
epochs
:
2
workspace
:
"
paddlerec.models.match.multiview-simnet"
# list of dataset
dataset
:
-
name
:
dataset_train
# name of dataset to distinguish different datasets
batch_size
:
2
type
:
DataLoader
# or QueueDataset
data_path
:
"
{workspace}/data/train"
sparse_slots
:
"
1
2
3"
-
name
:
dataset_infer
# name
batch_size
:
2
type
:
DataLoader
# or QueueDataset
data_path
:
"
{workspace}/data/test"
sparse_slots
:
"
1
2"
reader
:
batch_size
:
2
class
:
"
{workspace}/reader.py"
train_data_path
:
"
{workspace}/data/train"
dataset_class
:
"
DataLoader"
# hyper parameters of user-defined network
hyper_parameters
:
optimizer
:
class
:
Adam
learning_rate
:
0.0001
strategy
:
async
query_encoder
:
"
bow"
title_encoder
:
"
bow"
query_encode_dim
:
128
title_encode_dim
:
128
sparse_feature_dim
:
1000001
embedding_dim
:
128
hidden_size
:
128
margin
:
0.1
model
:
models
:
"
{workspace}/model.py"
hyper_parameters
:
use_DataLoader
:
True
query_encoder
:
"
bow"
title_encoder
:
"
bow"
query_encode_dim
:
128
title_encode_dim
:
128
query_slots
:
1
title_slots
:
1
sparse_feature_dim
:
1000001
embedding_dim
:
128
hidden_size
:
128
learning_rate
:
0.0001
optimizer
:
adam
# select runner by name
mode
:
runner1
# config of each runner.
# runner is a kind of paddle training class, which wraps the train/infer process.
runner
:
-
name
:
runner1
class
:
single_train
# num of epochs
epochs
:
2
# device to run training or infer
device
:
cpu
save_checkpoint_interval
:
1
# save model interval of epochs
save_inference_interval
:
1
# save inference
save_checkpoint_path
:
"
increment"
# save checkpoint path
save_inference_path
:
"
inference"
# save inference path
save_inference_feed_varnames
:
[]
# feed vars of save inference
save_inference_fetch_varnames
:
[]
# fetch vars of save inference
init_model_path
:
"
"
# load model path
fetch_period
:
1
-
name
:
runner2
class
:
single_infer
# num of epochs
epochs
:
1
# device to run training or infer
device
:
cpu
fetch_period
:
1
init_model_path
:
"
increment/0"
# load model path
save
:
increment
:
dirname
:
"
increment"
epoch_interval
:
1
save_last
:
True
inference
:
dirname
:
"
inference"
epoch_interval
:
1
save_last
:
True
# runner will run all the phase in each epoch
phase
:
-
name
:
phase1
model
:
"
{workspace}/model.py"
# user-defined model
dataset_name
:
dataset_train
# select dataset by name
thread_num
:
1
#- name: phase2
# model: "{workspace}/model.py" # user-defined model
# dataset_name: dataset_infer # select dataset by name
# thread_num: 1
models/match/multiview-simnet/model.py
浏览文件 @
0085a4f2
...
...
@@ -99,146 +99,88 @@ class SimpleEncoderFactory(object):
class
Model
(
ModelBase
):
def
__init__
(
self
,
config
):
ModelBase
.
__init__
(
self
,
config
)
self
.
init_config
()
def
init_config
(
self
):
self
.
_fetch_interval
=
1
query_encoder
=
envs
.
get_global_env
(
"hyper_parameters.query_encoder"
,
None
,
self
.
_namespace
)
title_encoder
=
envs
.
get_global_env
(
"hyper_parameters.title_encoder"
,
None
,
self
.
_namespace
)
query_encode_dim
=
envs
.
get_global_env
(
"hyper_parameters.query_encode_dim"
,
None
,
self
.
_namespace
)
title_encode_dim
=
envs
.
get_global_env
(
"hyper_parameters.title_encode_dim"
,
None
,
self
.
_namespace
)
query_slots
=
envs
.
get_global_env
(
"hyper_parameters.query_slots"
,
None
,
self
.
_namespace
)
title_slots
=
envs
.
get_global_env
(
"hyper_parameters.title_slots"
,
None
,
self
.
_namespace
)
factory
=
SimpleEncoderFactory
()
self
.
query_encoders
=
[
factory
.
create
(
query_encoder
,
query_encode_dim
)
for
i
in
range
(
query_slots
)
]
self
.
title_encoders
=
[
factory
.
create
(
title_encoder
,
title_encode_dim
)
for
i
in
range
(
title_slots
)
]
self
.
emb_size
=
envs
.
get_global_env
(
"hyper_parameters.sparse_feature_dim"
,
None
,
self
.
_namespace
)
self
.
emb_dim
=
envs
.
get_global_env
(
"hyper_parameters.embedding_dim"
,
None
,
self
.
_namespace
)
def
_init_hyper_parameters
(
self
):
self
.
query_encoder
=
envs
.
get_global_env
(
"hyper_parameters.query_encoder"
)
self
.
title_encoder
=
envs
.
get_global_env
(
"hyper_parameters.title_encoder"
)
self
.
query_encode_dim
=
envs
.
get_global_env
(
"hyper_parameters.query_encode_dim"
)
self
.
title_encode_dim
=
envs
.
get_global_env
(
"hyper_parameters.title_encode_dim"
)
self
.
emb_size
=
envs
.
get_global_env
(
"hyper_parameters.sparse_feature_dim"
)
self
.
emb_dim
=
envs
.
get_global_env
(
"hyper_parameters.embedding_dim"
)
self
.
emb_shape
=
[
self
.
emb_size
,
self
.
emb_dim
]
self
.
hidden_size
=
envs
.
get_global_env
(
"hyper_parameters.hidden_size"
,
None
,
self
.
_namespace
)
self
.
margin
=
0.1
def
input
(
self
,
is_train
=
True
):
self
.
q_slots
=
[
fluid
.
data
(
name
=
"%d"
%
i
,
shape
=
[
None
,
1
],
lod_level
=
1
,
dtype
=
'int64'
)
for
i
in
range
(
len
(
self
.
query_encoders
))
]
self
.
pt_slots
=
[
fluid
.
data
(
name
=
"%d"
%
(
i
+
len
(
self
.
query_encoders
)),
shape
=
[
None
,
1
],
lod_level
=
1
,
dtype
=
'int64'
)
for
i
in
range
(
len
(
self
.
title_encoders
))
]
if
is_train
==
False
:
return
self
.
q_slots
+
self
.
pt_slots
self
.
hidden_size
=
envs
.
get_global_env
(
"hyper_parameters.hidden_size"
)
self
.
margin
=
envs
.
get_global_env
(
"hyper_parameters.margin"
)
self
.
nt_slots
=
[
fluid
.
data
(
name
=
"%d"
%
(
i
+
len
(
self
.
query_encoders
)
+
len
(
self
.
title_encoders
)),
shape
=
[
None
,
1
],
lod_level
=
1
,
dtype
=
'int64'
)
for
i
in
range
(
len
(
self
.
title_encoders
))
def
net
(
self
,
input
,
is_infer
=
False
):
factory
=
SimpleEncoderFactory
()
self
.
q_slots
=
self
.
_sparse_data_var
[
0
:
1
]
self
.
query_encoders
=
[
factory
.
create
(
self
.
query_encoder
,
self
.
query_encode_dim
)
for
_
in
self
.
q_slots
]
return
self
.
q_slots
+
self
.
pt_slots
+
self
.
nt_slots
def
train_input
(
self
):
res
=
self
.
input
()
self
.
_data_var
=
res
use_dataloader
=
envs
.
get_global_env
(
"hyper_parameters.use_DataLoader"
,
False
,
self
.
_namespace
)
if
self
.
_platform
!=
"LINUX"
or
use_dataloader
:
self
.
_data_loader
=
fluid
.
io
.
DataLoader
.
from_generator
(
feed_list
=
self
.
_data_var
,
capacity
=
256
,
use_double_buffer
=
False
,
iterable
=
False
)
def
get_acc
(
self
,
x
,
y
):
less
=
tensor
.
cast
(
cf
.
less_than
(
x
,
y
),
dtype
=
'float32'
)
label_ones
=
fluid
.
layers
.
fill_constant_batch_size_like
(
input
=
x
,
dtype
=
'float32'
,
shape
=
[
-
1
,
1
],
value
=
1.0
)
correct
=
fluid
.
layers
.
reduce_sum
(
less
)
total
=
fluid
.
layers
.
reduce_sum
(
label_ones
)
acc
=
fluid
.
layers
.
elementwise_div
(
correct
,
total
)
return
acc
def
net
(
self
):
q_embs
=
[
fluid
.
embedding
(
input
=
query
,
size
=
self
.
emb_shape
,
param_attr
=
"emb"
)
for
query
in
self
.
q_slots
]
pt_embs
=
[
# encode each embedding field with encoder
q_encodes
=
[
self
.
query_encoders
[
i
].
forward
(
emb
)
for
i
,
emb
in
enumerate
(
q_embs
)
]
# concat multi view for query, pos_title, neg_title
q_concat
=
fluid
.
layers
.
concat
(
q_encodes
)
# projection of hidden layer
q_hid
=
fluid
.
layers
.
fc
(
q_concat
,
size
=
self
.
hidden_size
,
param_attr
=
'q_fc.w'
,
bias_attr
=
'q_fc.b'
)
self
.
pt_slots
=
self
.
_sparse_data_var
[
1
:
2
]
self
.
title_encoders
=
[
factory
.
create
(
self
.
title_encoder
,
self
.
title_encode_dim
)
]
pt_embs
=
[
fluid
.
embedding
(
input
=
title
,
size
=
self
.
emb_shape
,
param_attr
=
"emb"
)
for
title
in
self
.
pt_slots
]
nt_embs
=
[
pt_encodes
=
[
self
.
title_encoders
[
i
].
forward
(
emb
)
for
i
,
emb
in
enumerate
(
pt_embs
)
]
pt_concat
=
fluid
.
layers
.
concat
(
pt_encodes
)
pt_hid
=
fluid
.
layers
.
fc
(
pt_concat
,
size
=
self
.
hidden_size
,
param_attr
=
't_fc.w'
,
bias_attr
=
't_fc.b'
)
# cosine of hidden layers
cos_pos
=
fluid
.
layers
.
cos_sim
(
q_hid
,
pt_hid
)
if
is_infer
:
self
.
_infer_results
[
'query_pt_sim'
]
=
cos_pos
return
self
.
nt_slots
=
self
.
_sparse_data_var
[
2
:
3
]
nt_embs
=
[
fluid
.
embedding
(
input
=
title
,
size
=
self
.
emb_shape
,
param_attr
=
"emb"
)
for
title
in
self
.
nt_slots
]
# encode each embedding field with encoder
q_encodes
=
[
self
.
query_encoders
[
i
].
forward
(
emb
)
for
i
,
emb
in
enumerate
(
q_embs
)
]
pt_encodes
=
[
self
.
title_encoders
[
i
].
forward
(
emb
)
for
i
,
emb
in
enumerate
(
pt_embs
)
]
nt_encodes
=
[
nt_encodes
=
[
self
.
title_encoders
[
i
].
forward
(
emb
)
for
i
,
emb
in
enumerate
(
nt_embs
)
]
# concat multi view for query, pos_title, neg_title
q_concat
=
fluid
.
layers
.
concat
(
q_encodes
)
pt_concat
=
fluid
.
layers
.
concat
(
pt_encodes
)
nt_concat
=
fluid
.
layers
.
concat
(
nt_encodes
)
# projection of hidden layer
q_hid
=
fluid
.
layers
.
fc
(
q_concat
,
size
=
self
.
hidden_size
,
param_attr
=
'q_fc.w'
,
bias_attr
=
'q_fc.b'
)
pt_hid
=
fluid
.
layers
.
fc
(
pt_concat
,
size
=
self
.
hidden_size
,
param_attr
=
't_fc.w'
,
bias_attr
=
't_fc.b'
)
nt_hid
=
fluid
.
layers
.
fc
(
nt_concat
,
nt_concat
=
fluid
.
layers
.
concat
(
nt_encodes
)
nt_hid
=
fluid
.
layers
.
fc
(
nt_concat
,
size
=
self
.
hidden_size
,
param_attr
=
't_fc.w'
,
bias_attr
=
't_fc.b'
)
cos_neg
=
fluid
.
layers
.
cos_sim
(
q_hid
,
nt_hid
)
# cosine of hidden layers
cos_pos
=
fluid
.
layers
.
cos_sim
(
q_hid
,
pt_hid
)
cos_neg
=
fluid
.
layers
.
cos_sim
(
q_hid
,
nt_hid
)
# pairwise hinge_loss
# pairwise hinge_loss
loss_part1
=
fluid
.
layers
.
elementwise_sub
(
tensor
.
fill_constant_batch_size_like
(
input
=
cos_pos
,
...
...
@@ -254,72 +196,16 @@ class Model(ModelBase):
input
=
loss_part2
,
shape
=
[
-
1
,
1
],
value
=
0.0
,
dtype
=
'float32'
),
loss_part2
)
self
.
avg
_cost
=
fluid
.
layers
.
mean
(
loss_part3
)
self
.
_cost
=
fluid
.
layers
.
mean
(
loss_part3
)
self
.
acc
=
self
.
get_acc
(
cos_neg
,
cos_pos
)
def
avg_loss
(
self
):
self
.
_cost
=
self
.
avg_cost
def
metrics
(
self
):
self
.
_metrics
[
"loss"
]
=
self
.
avg_cost
self
.
_metrics
[
"loss"
]
=
self
.
_cost
self
.
_metrics
[
"acc"
]
=
self
.
acc
def
train_net
(
self
):
self
.
train_input
()
self
.
net
()
self
.
avg_loss
()
self
.
metrics
()
def
optimizer
(
self
):
learning_rate
=
envs
.
get_global_env
(
"hyper_parameters.learning_rate"
,
None
,
self
.
_namespace
)
optimizer
=
fluid
.
optimizer
.
Adam
(
learning_rate
=
learning_rate
)
return
optimizer
def
infer_input
(
self
):
res
=
self
.
input
(
is_train
=
False
)
self
.
_infer_data_var
=
res
self
.
_infer_data_loader
=
fluid
.
io
.
DataLoader
.
from_generator
(
feed_list
=
self
.
_infer_data_var
,
capacity
=
64
,
use_double_buffer
=
False
,
iterable
=
False
)
def
infer_net
(
self
):
self
.
infer_input
()
# lookup embedding for each slot
q_embs
=
[
fluid
.
embedding
(
input
=
query
,
size
=
self
.
emb_shape
,
param_attr
=
"emb"
)
for
query
in
self
.
q_slots
]
pt_embs
=
[
fluid
.
embedding
(
input
=
title
,
size
=
self
.
emb_shape
,
param_attr
=
"emb"
)
for
title
in
self
.
pt_slots
]
# encode each embedding field with encoder
q_encodes
=
[
self
.
query_encoders
[
i
].
forward
(
emb
)
for
i
,
emb
in
enumerate
(
q_embs
)
]
pt_encodes
=
[
self
.
title_encoders
[
i
].
forward
(
emb
)
for
i
,
emb
in
enumerate
(
pt_embs
)
]
# concat multi view for query, pos_title, neg_title
q_concat
=
fluid
.
layers
.
concat
(
q_encodes
)
pt_concat
=
fluid
.
layers
.
concat
(
pt_encodes
)
# projection of hidden layer
q_hid
=
fluid
.
layers
.
fc
(
q_concat
,
size
=
self
.
hidden_size
,
param_attr
=
'q_fc.w'
,
bias_attr
=
'q_fc.b'
)
pt_hid
=
fluid
.
layers
.
fc
(
pt_concat
,
size
=
self
.
hidden_size
,
param_attr
=
't_fc.w'
,
bias_attr
=
't_fc.b'
)
# cosine of hidden layers
cos
=
fluid
.
layers
.
cos_sim
(
q_hid
,
pt_hid
)
self
.
_infer_results
[
'query_pt_sim'
]
=
cos
def
get_acc
(
self
,
x
,
y
):
less
=
tensor
.
cast
(
cf
.
less_than
(
x
,
y
),
dtype
=
'float32'
)
label_ones
=
fluid
.
layers
.
fill_constant_batch_size_like
(
input
=
x
,
dtype
=
'float32'
,
shape
=
[
-
1
,
1
],
value
=
1.0
)
correct
=
fluid
.
layers
.
reduce_sum
(
less
)
total
=
fluid
.
layers
.
reduce_sum
(
label_ones
)
acc
=
fluid
.
layers
.
elementwise_div
(
correct
,
total
)
return
acc
models/recall/gnn/config.yaml
浏览文件 @
0085a4f2
...
...
@@ -11,46 +11,71 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
evaluate
:
workspace
:
"
paddlerec.models.recall.gnn"
reader
:
batch_size
:
50
class
:
"
{workspace}/evaluate_reader.py"
test_data_path
:
"
{workspace}/data/test"
train
:
trainer
:
# for cluster training
strategy
:
"
async"
# workspace
workspace
:
"
paddlerec.models.recall.gnn"
epochs
:
2
workspace
:
"
paddlerec.models.recall.gnn"
# list of dataset
dataset
:
-
name
:
dataset_train
# name of dataset to distinguish different datasets
batch_size
:
100
type
:
DataLoader
# or QueueDataset
data_path
:
"
{workspace}/data/train"
data_converter
:
"
{workspace}/reader.py"
-
name
:
dataset_infer
# name
batch_size
:
50
type
:
DataLoader
# or QueueDataset
data_path
:
"
{workspace}/data/test"
data_converter
:
"
{workspace}/evaluate_reader.py"
reader
:
batch_size
:
100
class
:
"
{workspace}/reader.py"
train_data_path
:
"
{workspace}/data/train"
dataset_class
:
"
DataLoader"
# hyper parameters of user-defined network
hyper_parameters
:
optimizer
:
class
:
Adam
learning_rate
:
0.001
decay_steps
:
3
decay_rate
:
0.1
l2
:
0.00001
sparse_feature_nums
:
43098
sparse_feature_dim
:
100
corpus_size
:
719470
gnn_propogation_steps
:
1
model
:
models
:
"
{workspace}/model.py"
hyper_parameters
:
use_DataLoader
:
True
config_path
:
"
{workspace}/data/config.txt"
sparse_feature_dim
:
100
gnn_propogation_steps
:
1
learning_rate
:
0.001
l2
:
0.00001
decay_steps
:
3
decay_rate
:
0.1
optimizer
:
adam
# select runner by name
mode
:
runner1
# config of each runner.
# runner is a kind of paddle training class, which wraps the train/infer process.
runner
:
-
name
:
runner1
class
:
single_train
# num of epochs
epochs
:
2
# device to run training or infer
device
:
cpu
save_checkpoint_interval
:
1
# save model interval of epochs
save_inference_interval
:
1
# save inference
save_checkpoint_path
:
"
increment"
# save checkpoint path
save_inference_path
:
"
inference"
# save inference path
save_inference_feed_varnames
:
[]
# feed vars of save inference
save_inference_fetch_varnames
:
[]
# fetch vars of save inference
init_model_path
:
"
"
# load model path
fetch_period
:
10
-
name
:
runner2
class
:
single_infer
# num of epochs
epochs
:
1
# device to run training or infer
device
:
cpu
fetch_period
:
1
init_model_path
:
"
increment/0"
# load model path
save
:
increment
:
dirname
:
"
increment"
epoch_interval
:
1
save_last
:
True
inference
:
dirname
:
"
inference"
epoch_interval
:
1
save_last
:
True
# runner will run all the phase in each epoch
phase
:
-
name
:
phase1
model
:
"
{workspace}/model.py"
# user-defined model
dataset_name
:
dataset_train
# select dataset by name
thread_num
:
1
#- name: phase2
# model: "{workspace}/model.py" # user-defined model
# dataset_name: dataset_infer # select dataset by name
# thread_num: 1
models/recall/gnn/evaluate_reader.py
浏览文件 @
0085a4f2
...
...
@@ -21,10 +21,9 @@ from paddlerec.core.reader import Reader
from
paddlerec.core.utils
import
envs
class
Evaluate
Reader
(
Reader
):
class
Train
Reader
(
Reader
):
def
init
(
self
):
self
.
batch_size
=
envs
.
get_global_env
(
"batch_size"
,
None
,
"evaluate.reader"
)
self
.
batch_size
=
envs
.
get_global_env
(
"dataset.dataset_infer.batch_size"
)
self
.
input
=
[]
self
.
length
=
None
...
...
models/recall/gnn/model.py
浏览文件 @
0085a4f2
...
...
@@ -25,74 +25,59 @@ from paddlerec.core.model import Model as ModelBase
class
Model
(
ModelBase
):
def
__init__
(
self
,
config
):
ModelBase
.
__init__
(
self
,
config
)
self
.
init_config
()
def
init_config
(
self
):
self
.
_fetch_interval
=
1
self
.
items_num
,
self
.
ins_num
=
self
.
config_read
(
envs
.
get_global_env
(
"hyper_parameters.config_path"
,
None
,
self
.
_namespace
))
self
.
train_batch_size
=
envs
.
get_global_env
(
"batch_size"
,
None
,
"train.reader"
)
self
.
evaluate_batch_size
=
envs
.
get_global_env
(
"batch_size"
,
None
,
"evaluate.reader"
)
self
.
hidden_size
=
envs
.
get_global_env
(
"hyper_parameters.sparse_feature_dim"
,
None
,
self
.
_namespace
)
self
.
step
=
envs
.
get_global_env
(
"hyper_parameters.gnn_propogation_steps"
,
None
,
self
.
_namespace
)
def
config_read
(
self
,
config_path
=
None
):
if
config_path
is
None
:
raise
ValueError
(
"please set train.model.hyper_parameters.config_path at first"
)
with
open
(
config_path
,
"r"
)
as
fin
:
item_nums
=
int
(
fin
.
readline
().
strip
())
ins_nums
=
int
(
fin
.
readline
().
strip
())
return
item_nums
,
ins_nums
def
input
(
self
,
bs
):
self
.
items
=
fluid
.
data
(
def
_init_hyper_parameters
(
self
):
self
.
learning_rate
=
envs
.
get_global_env
(
"hyper_parameters.optimizer.learning_rate"
)
self
.
decay_steps
=
envs
.
get_global_env
(
"hyper_parameters.optimizer.decay_steps"
)
self
.
decay_rate
=
envs
.
get_global_env
(
"hyper_parameters.optimizer.decay_rate"
)
self
.
l2
=
envs
.
get_global_env
(
"hyper_parameters.optimizer.l2"
)
self
.
dict_size
=
envs
.
get_global_env
(
"hyper_parameters.sparse_feature_nums"
)
self
.
corpus_size
=
envs
.
get_global_env
(
"hyper_parameters.corpus_size"
)
self
.
train_batch_size
=
envs
.
get_global_env
(
"dataset.dataset_train.batch_size"
)
self
.
evaluate_batch_size
=
envs
.
get_global_env
(
"dataset.dataset_infer.batch_size"
)
self
.
hidden_size
=
envs
.
get_global_env
(
"hyper_parameters.sparse_feature_dim"
)
self
.
step
=
envs
.
get_global_env
(
"hyper_parameters.gnn_propogation_steps"
)
def
input_data
(
self
,
is_infer
=
False
,
**
kwargs
):
if
is_infer
:
bs
=
self
.
evaluate_batch_size
else
:
bs
=
self
.
train_batch_size
items
=
fluid
.
data
(
name
=
"items"
,
shape
=
[
bs
,
-
1
],
dtype
=
"int64"
)
# [batch_size, uniq_max]
se
lf
.
se
q_index
=
fluid
.
data
(
seq_index
=
fluid
.
data
(
name
=
"seq_index"
,
shape
=
[
bs
,
-
1
,
2
],
dtype
=
"int32"
)
# [batch_size, seq_max, 2]
self
.
last_index
=
fluid
.
data
(
last_index
=
fluid
.
data
(
name
=
"last_index"
,
shape
=
[
bs
,
2
],
dtype
=
"int32"
)
# [batch_size, 2]
self
.
adj_in
=
fluid
.
data
(
adj_in
=
fluid
.
data
(
name
=
"adj_in"
,
shape
=
[
bs
,
-
1
,
-
1
],
dtype
=
"float32"
)
# [batch_size, seq_max, seq_max]
self
.
adj_out
=
fluid
.
data
(
adj_out
=
fluid
.
data
(
name
=
"adj_out"
,
shape
=
[
bs
,
-
1
,
-
1
],
dtype
=
"float32"
)
# [batch_size, seq_max, seq_max]
self
.
mask
=
fluid
.
data
(
mask
=
fluid
.
data
(
name
=
"mask"
,
shape
=
[
bs
,
-
1
,
1
],
dtype
=
"float32"
)
# [batch_size, seq_max, 1]
self
.
label
=
fluid
.
data
(
label
=
fluid
.
data
(
name
=
"label"
,
shape
=
[
bs
,
1
],
dtype
=
"int64"
)
# [batch_size, 1]
res
=
[
self
.
items
,
self
.
seq_index
,
self
.
last_index
,
self
.
adj_in
,
self
.
adj_out
,
self
.
mask
,
self
.
label
items
,
seq_index
,
last_index
,
adj_in
,
adj_out
,
mask
,
label
]
return
res
def
train_input
(
self
):
res
=
self
.
input
(
self
.
train_batch_size
)
self
.
_data_var
=
res
use_dataloader
=
envs
.
get_global_env
(
"hyper_parameters.use_DataLoader"
,
False
,
self
.
_namespace
)
if
self
.
_platform
!=
"LINUX"
or
use_dataloader
:
self
.
_data_loader
=
fluid
.
io
.
DataLoader
.
from_generator
(
feed_list
=
self
.
_data_var
,
capacity
=
256
,
use_double_buffer
=
False
,
iterable
=
False
)
def
net
(
self
,
items_num
,
hidden_size
,
step
,
bs
):
stdv
=
1.0
/
math
.
sqrt
(
hidden_size
)
def
net
(
self
,
inputs
,
is_infer
=
False
):
if
is_infer
:
bs
=
self
.
evaluate_batch_size
else
:
bs
=
self
.
train_batch_size
stdv
=
1.0
/
math
.
sqrt
(
self
.
hidden_size
)
def
embedding_layer
(
input
,
table_name
,
...
...
@@ -100,22 +85,22 @@ class Model(ModelBase):
initializer_instance
=
None
):
emb
=
fluid
.
embedding
(
input
=
input
,
size
=
[
items_num
,
emb_dim
],
size
=
[
self
.
dict_size
,
emb_dim
],
param_attr
=
fluid
.
ParamAttr
(
name
=
table_name
,
initializer
=
initializer_instance
)
,
)
name
=
table_name
,
initializer
=
initializer_instance
))
return
emb
sparse_initializer
=
fluid
.
initializer
.
Uniform
(
low
=-
stdv
,
high
=
stdv
)
items_emb
=
embedding_layer
(
self
.
items
,
"emb"
,
hidden_size
,
items_emb
=
embedding_layer
(
inputs
[
0
],
"emb"
,
self
.
hidden_size
,
sparse_initializer
)
pre_state
=
items_emb
for
i
in
range
(
step
):
for
i
in
range
(
s
elf
.
s
tep
):
pre_state
=
layers
.
reshape
(
x
=
pre_state
,
shape
=
[
bs
,
-
1
,
hidden_size
])
x
=
pre_state
,
shape
=
[
bs
,
-
1
,
self
.
hidden_size
])
state_in
=
layers
.
fc
(
input
=
pre_state
,
name
=
"state_in"
,
size
=
hidden_size
,
size
=
self
.
hidden_size
,
act
=
None
,
num_flatten_dims
=
2
,
param_attr
=
fluid
.
ParamAttr
(
...
...
@@ -127,7 +112,7 @@ class Model(ModelBase):
state_out
=
layers
.
fc
(
input
=
pre_state
,
name
=
"state_out"
,
size
=
hidden_size
,
size
=
self
.
hidden_size
,
act
=
None
,
num_flatten_dims
=
2
,
param_attr
=
fluid
.
ParamAttr
(
...
...
@@ -137,33 +122,32 @@ class Model(ModelBase):
initializer
=
fluid
.
initializer
.
Uniform
(
low
=-
stdv
,
high
=
stdv
)))
# [batch_size, uniq_max, h]
state_adj_in
=
layers
.
matmul
(
self
.
adj_in
,
state_adj_in
=
layers
.
matmul
(
inputs
[
3
]
,
state_in
)
# [batch_size, uniq_max, h]
state_adj_out
=
layers
.
matmul
(
self
.
adj_out
,
state_out
)
# [batch_size, uniq_max, h]
state_adj_out
=
layers
.
matmul
(
inputs
[
4
],
state_out
)
# [batch_size, uniq_max, h]
gru_input
=
layers
.
concat
([
state_adj_in
,
state_adj_out
],
axis
=
2
)
gru_input
=
layers
.
reshape
(
x
=
gru_input
,
shape
=
[
-
1
,
hidden_size
*
2
])
x
=
gru_input
,
shape
=
[
-
1
,
self
.
hidden_size
*
2
])
gru_fc
=
layers
.
fc
(
input
=
gru_input
,
name
=
"gru_fc"
,
size
=
3
*
hidden_size
,
size
=
3
*
self
.
hidden_size
,
bias_attr
=
False
)
pre_state
,
_
,
_
=
fluid
.
layers
.
gru_unit
(
input
=
gru_fc
,
hidden
=
layers
.
reshape
(
x
=
pre_state
,
shape
=
[
-
1
,
hidden_size
]),
size
=
3
*
hidden_size
)
x
=
pre_state
,
shape
=
[
-
1
,
self
.
hidden_size
]),
size
=
3
*
self
.
hidden_size
)
final_state
=
layers
.
reshape
(
pre_state
,
shape
=
[
bs
,
-
1
,
hidden_size
])
seq
=
layers
.
gather_nd
(
final_state
,
self
.
seq_index
)
last
=
layers
.
gather_nd
(
final_state
,
self
.
last_index
)
final_state
=
layers
.
reshape
(
pre_state
,
shape
=
[
bs
,
-
1
,
self
.
hidden_size
])
seq
=
layers
.
gather_nd
(
final_state
,
inputs
[
1
]
)
last
=
layers
.
gather_nd
(
final_state
,
inputs
[
2
]
)
seq_fc
=
layers
.
fc
(
input
=
seq
,
name
=
"seq_fc"
,
size
=
hidden_size
,
size
=
self
.
hidden_size
,
bias_attr
=
False
,
act
=
None
,
num_flatten_dims
=
2
,
...
...
@@ -171,7 +155,7 @@ class Model(ModelBase):
low
=-
stdv
,
high
=
stdv
)))
# [batch_size, seq_max, h]
last_fc
=
layers
.
fc
(
input
=
last
,
name
=
"last_fc"
,
size
=
hidden_size
,
size
=
self
.
hidden_size
,
bias_attr
=
False
,
act
=
None
,
num_flatten_dims
=
1
,
...
...
@@ -184,7 +168,7 @@ class Model(ModelBase):
add
=
layers
.
elementwise_add
(
seq_fc_t
,
last_fc
)
# [seq_max, batch_size, h]
b
=
layers
.
create_parameter
(
shape
=
[
hidden_size
],
shape
=
[
self
.
hidden_size
],
dtype
=
'float32'
,
default_initializer
=
fluid
.
initializer
.
Constant
(
value
=
0.0
))
# [h]
add
=
layers
.
elementwise_add
(
add
,
b
)
# [seq_max, batch_size, h]
...
...
@@ -202,7 +186,7 @@ class Model(ModelBase):
bias_attr
=
False
,
param_attr
=
fluid
.
ParamAttr
(
initializer
=
fluid
.
initializer
.
Uniform
(
low
=-
stdv
,
high
=
stdv
)))
# [batch_size, seq_max, 1]
weight
*=
self
.
mask
weight
*=
inputs
[
5
]
weight_mask
=
layers
.
elementwise_mul
(
seq
,
weight
,
axis
=
0
)
# [batch_size, seq_max, h]
global_attention
=
layers
.
reduce_sum
(
...
...
@@ -213,7 +197,7 @@ class Model(ModelBase):
final_attention_fc
=
layers
.
fc
(
input
=
final_attention
,
name
=
"final_attention_fc"
,
size
=
hidden_size
,
size
=
self
.
hidden_size
,
bias_attr
=
False
,
act
=
None
,
param_attr
=
fluid
.
ParamAttr
(
initializer
=
fluid
.
initializer
.
Uniform
(
...
...
@@ -225,7 +209,7 @@ class Model(ModelBase):
# dtype="int64",
# persistable=True,
# name="all_vocab")
all_vocab
=
np
.
arange
(
1
,
items_num
).
reshape
((
-
1
)).
astype
(
'int32'
)
all_vocab
=
np
.
arange
(
1
,
self
.
dict_size
).
reshape
((
-
1
)).
astype
(
'int32'
)
all_vocab
=
fluid
.
layers
.
cast
(
x
=
fluid
.
layers
.
assign
(
all_vocab
),
dtype
=
'int64'
)
...
...
@@ -235,63 +219,34 @@ class Model(ModelBase):
name
=
"emb"
,
initializer
=
fluid
.
initializer
.
Uniform
(
low
=-
stdv
,
high
=
stdv
)),
size
=
[
items_num
,
hidden_size
])
# [all_vocab, h]
size
=
[
self
.
dict_size
,
self
.
hidden_size
])
# [all_vocab, h]
logits
=
layers
.
matmul
(
x
=
final_attention_fc
,
y
=
all_emb
,
transpose_y
=
True
)
# [batch_size, all_vocab]
softmax
=
layers
.
softmax_with_cross_entropy
(
logits
=
logits
,
label
=
self
.
label
)
# [batch_size, 1]
logits
=
logits
,
label
=
inputs
[
6
]
)
# [batch_size, 1]
self
.
loss
=
layers
.
reduce_mean
(
softmax
)
# [1]
self
.
acc
=
layers
.
accuracy
(
input
=
logits
,
label
=
self
.
label
,
k
=
20
)
self
.
acc
=
layers
.
accuracy
(
input
=
logits
,
label
=
inputs
[
6
]
,
k
=
20
)
def
avg_loss
(
self
):
self
.
_cost
=
self
.
loss
if
is_infer
:
self
.
_infer_results
[
'acc'
]
=
self
.
acc
self
.
_infer_results
[
'loss'
]
=
self
.
loss
return
def
metrics
(
self
):
self
.
_metrics
[
"LOSS"
]
=
self
.
loss
self
.
_metrics
[
"LOSS"
]
=
self
.
loss
self
.
_metrics
[
"train_acc"
]
=
self
.
acc
def
train_net
(
self
):
self
.
train_input
()
self
.
net
(
self
.
items_num
,
self
.
hidden_size
,
self
.
step
,
self
.
train_batch_size
)
self
.
avg_loss
()
self
.
metrics
()
def
optimizer
(
self
):
learning_rate
=
envs
.
get_global_env
(
"hyper_parameters.learning_rate"
,
None
,
self
.
_namespace
)
step_per_epoch
=
self
.
ins_num
//
self
.
train_batch_size
decay_steps
=
envs
.
get_global_env
(
"hyper_parameters.decay_steps"
,
None
,
self
.
_namespace
)
decay_rate
=
envs
.
get_global_env
(
"hyper_parameters.decay_rate"
,
None
,
self
.
_namespace
)
l2
=
envs
.
get_global_env
(
"hyper_parameters.l2"
,
None
,
self
.
_namespace
)
step_per_epoch
=
self
.
corpus_size
//
self
.
train_batch_size
optimizer
=
fluid
.
optimizer
.
Adam
(
learning_rate
=
fluid
.
layers
.
exponential_decay
(
learning_rate
=
learning_rate
,
decay_steps
=
decay_steps
*
step_per_epoch
,
decay_rate
=
decay_rate
),
learning_rate
=
self
.
learning_rate
,
decay_steps
=
self
.
decay_steps
*
step_per_epoch
,
decay_rate
=
self
.
decay_rate
),
regularization
=
fluid
.
regularizer
.
L2DecayRegularizer
(
regularization_coeff
=
l2
))
regularization_coeff
=
self
.
l2
))
return
optimizer
def
infer_input
(
self
):
self
.
_reader_namespace
=
"evaluate.reader"
res
=
self
.
input
(
self
.
evaluate_batch_size
)
self
.
_infer_data_var
=
res
self
.
_infer_data_loader
=
fluid
.
io
.
DataLoader
.
from_generator
(
feed_list
=
self
.
_infer_data_var
,
capacity
=
64
,
use_double_buffer
=
False
,
iterable
=
False
)
def
infer_net
(
self
):
self
.
infer_input
()
self
.
net
(
self
.
items_num
,
self
.
hidden_size
,
self
.
step
,
self
.
evaluate_batch_size
)
self
.
_infer_results
[
'acc'
]
=
self
.
acc
self
.
_infer_results
[
'loss'
]
=
self
.
loss
models/recall/gnn/reader.py
浏览文件 @
0085a4f2
...
...
@@ -23,9 +23,7 @@ from paddlerec.core.utils import envs
class
TrainReader
(
Reader
):
def
init
(
self
):
self
.
batch_size
=
envs
.
get_global_env
(
"batch_size"
,
None
,
"train.reader"
)
self
.
batch_size
=
envs
.
get_global_env
(
"dataset.dataset_train.batch_size"
)
self
.
input
=
[]
self
.
length
=
None
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录