1. 17 6月, 2022 1 次提交
  2. 20 2月, 2022 1 次提交
  3. 15 2月, 2022 1 次提交
  4. 29 1月, 2022 1 次提交
    • L
      Optimize layer norm backward cuda kernel when cols is 1024. (#39247) · 99cfcc09
      Li Min 提交于
      * Add fp16 support for scale/bias for fused_layernnorm_residual_dropout_bias op.
      
      * Remove useless code.
      
      * Remove useless code.
      
      * Optimize layer_norm fwd when cols is 1024.
      
      * Remove useless code.
      
      * Minors.
      
      * Minors.
      
      * Modifications accordding to reviews.
      
      * Minors.
      
      * Optimize layer_norm bwd kernel when cols is 1024.
      
      * Polish layer_norm_bwd_1024 kernel.
      
      * Limit ln_bwd_1024_kernel to paddle_with_cuda.
      
      * Fix double type compile error.
      
      * Add optimization of ln bwd for fused_dropout_add_ln op.
      
      * Polish codes.
      99cfcc09
  5. 17 1月, 2022 1 次提交
    • W
      [Pten] Replace platform::Place to pten::Place. (#38899) · c48a9ad5
      Wilber 提交于
      * add pten::Place data structure.
      
      * update ci problem
      
      * fix ci problem
      
      * update
      
      * using platform::Place=pten::Place
      
      * remove BOOST_GET_CONST for CPUPlace and GPUPlace
      
      * compile pass 25%.
      
      * compile pass 45%
      
      * compile pass 60%
      
      * remove boost_get for xpu npu mlu and ipu
      
      * compile pass on cpu and gpu.
      
      * fix compile problem
      
      * fix compile error.
      
      * update
      
      * fix ci problem
      
      * update
      
      * ci approve
      
      * fix ci problem
      
      * fix ci eager test problem
      
      * remove BOOST_GET_CONST
      
      * fix npu compile
      c48a9ad5
  6. 07 1月, 2022 1 次提交
  7. 28 12月, 2021 1 次提交
  8. 22 10月, 2021 1 次提交
    • L
      Fused attention op forward (#35905) · d4906214
      Li Min 提交于
      功能:本PR的目标是提高attention模块的计算性能。
      为了减少框架层对op的调度开销,本PR通过在C++层手动实现attention模块,对外提供attention 大op;
      为了减少防存开销,本PR采取了两种优化方法:
      (1)在q,k,v计算时通过共享输入X,将该处的gemm,transpose和bias add从三次调用减少为一次;
      (2)使用kernel融合优化技术,在不同cuda kernel之间通过寄存器传输数据;
      d4906214
  9. 29 9月, 2021 1 次提交