Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
Paddle
提交
092d45c3
P
Paddle
项目概览
BaiXuePrincess
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
092d45c3
编写于
9月 29, 2021
作者:
L
Li Min
提交者:
GitHub
9月 29, 2021
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Add fused_dropout wrapper to ease use. (#36185)
上级
5e1d0b5c
变更
3
隐藏空白更改
内联
并排
Showing
3 changed file
with
339 addition
and
25 deletion
+339
-25
paddle/fluid/operators/dropout_impl.cu.h
paddle/fluid/operators/dropout_impl.cu.h
+4
-25
paddle/fluid/operators/dropout_impl_util.h
paddle/fluid/operators/dropout_impl_util.h
+53
-0
paddle/fluid/operators/fused/fused_dropout_helper.h
paddle/fluid/operators/fused/fused_dropout_helper.h
+282
-0
未找到文件。
paddle/fluid/operators/dropout_impl.cu.h
浏览文件 @
092d45c3
...
...
@@ -30,6 +30,7 @@ limitations under the License. */
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/generator.h"
#include "paddle/fluid/framework/tensor_util.h"
#include "paddle/fluid/operators/dropout_impl_util.h"
#include "paddle/fluid/operators/dropout_op.h"
#include "paddle/fluid/platform/aligned_vector.h"
#include "paddle/fluid/platform/gpu_launch_config.h"
...
...
@@ -196,31 +197,9 @@ void DropoutFwGPUKernelDriver(const platform::CUDADeviceContext& dev_ctx,
config
.
thread_per_block
.
x
*
vec_size
)
+
1
)
*
vec_size
;
int
device_id
=
BOOST_GET_CONST
(
platform
::
CUDAPlace
,
dev_ctx
.
GetPlace
()).
GetDeviceId
();
auto
gen_cuda
=
framework
::
GetDefaultCUDAGenerator
(
device_id
);
if
((
seed
)
&&
platform
::
is_gpu_place
(
seed
->
place
()))
{
framework
::
Tensor
seed_cpu_tensor
;
TensorCopySync
(
*
seed
,
platform
::
CPUPlace
(),
&
seed_cpu_tensor
);
seed_data
=
static_cast
<
uint64_t
>
(
seed_cpu_tensor
.
data
<
int
>
()[
0
]);
increment
=
offset
;
}
else
if
(
seed
&&
platform
::
is_cpu_place
(
seed
->
place
()))
{
seed_data
=
*
(
seed
->
data
<
int
>
());
increment
=
offset
;
}
else
if
(
gen_cuda
->
GetIsInitPy
()
&&
(
!
is_fix_seed
))
{
auto
seed_offset
=
gen_cuda
->
IncrementOffset
(
offset
);
seed_data
=
seed_offset
.
first
;
increment
=
seed_offset
.
second
;
}
else
{
if
(
seed
)
{
seed_data
=
*
(
seed
->
data
<
int
>
());
}
else
{
std
::
random_device
rnd
;
seed_data
=
is_fix_seed
?
seed_val
:
rnd
();
}
increment
=
offset
;
}
GetSeedDataAndIncrement
(
dev_ctx
,
seed
,
is_fix_seed
,
seed_val
,
offset
,
&
seed_data
,
&
increment
);
#ifdef __HIPCC__
if
(
vec_size
==
4
&&
size
%
4
==
0
)
{
...
...
paddle/fluid/operators/dropout_impl_util.h
0 → 100644
浏览文件 @
092d45c3
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "paddle/fluid/framework/generator.h"
#include "paddle/fluid/framework/tensor_util.h"
namespace
paddle
{
namespace
operators
{
inline
void
GetSeedDataAndIncrement
(
const
platform
::
CUDADeviceContext
&
dev_ctx
,
const
framework
::
Tensor
*
seed
,
const
bool
is_fix_seed
,
const
int
seed_val
,
const
int
offset
,
uint64_t
*
seed_data
,
uint64_t
*
increment
)
{
int
device_id
=
BOOST_GET_CONST
(
platform
::
CUDAPlace
,
dev_ctx
.
GetPlace
()).
GetDeviceId
();
auto
gen_cuda
=
framework
::
GetDefaultCUDAGenerator
(
device_id
);
if
((
seed
)
&&
platform
::
is_gpu_place
(
seed
->
place
()))
{
framework
::
Tensor
seed_cpu_tensor
;
TensorCopySync
(
*
seed
,
platform
::
CPUPlace
(),
&
seed_cpu_tensor
);
*
seed_data
=
static_cast
<
uint64_t
>
(
seed_cpu_tensor
.
data
<
int
>
()[
0
]);
*
increment
=
offset
;
}
else
if
(
gen_cuda
->
GetIsInitPy
()
&&
(
!
is_fix_seed
))
{
auto
seed_offset
=
gen_cuda
->
IncrementOffset
(
offset
);
*
seed_data
=
seed_offset
.
first
;
*
increment
=
seed_offset
.
second
;
}
else
{
if
(
seed
)
{
*
seed_data
=
*
(
seed
->
data
<
int
>
());
}
else
{
std
::
random_device
rnd
;
*
seed_data
=
is_fix_seed
?
seed_val
:
rnd
();
}
*
increment
=
offset
;
}
}
}
// namespace operators
}
// namespace paddle
paddle/fluid/operators/fused/fused_dropout_helper.h
0 → 100644
浏览文件 @
092d45c3
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "paddle/fluid/framework/generator.h"
#include "paddle/fluid/operators/dropout_impl_util.h"
#include "paddle/fluid/operators/fused/fused_dropout_act_bias.h"
#include "paddle/fluid/operators/fused/fused_layernorm_residual_dropout_bias.h"
#include "paddle/fluid/operators/fused/fused_residual_dropout_bias.h"
#include "paddle/fluid/operators/math/functors.h"
namespace
paddle
{
namespace
operators
{
/**
* Support two Dropouts in the use senarieo.
* This warpper can be used in FFN op.
* The DropoutParam will be used in the fused_dropout_act_bias,
* fused_residual_dropout_bias(pre_layer_norm=ture) or
* fused_layernorm_residual_dropout_bias(pre_layer_norm=false).
*/
struct
DropoutParam
{
uint64_t
seed
;
float
dropout_prob
;
bool
is_upscale_in_train
;
bool
is_test
;
bool
fix_seed
;
int
increment
;
const
framework
::
Tensor
*
tensor_seed
;
int
seed_val
;
DropoutParam
()
{
fix_seed
=
false
;
seed
=
0
;
is_test
=
false
;
is_upscale_in_train
=
false
;
dropout_prob
=
0.5
;
tensor_seed
=
nullptr
;
seed_val
=
0
;
}
/**
* dropout_index: can be 0, 1, 2. 0 means there is only one dropout,
* 1 and 2 represent two dropout, the parameter name of dropout
* will be "dropout" + dropout_index + param name, such as dropout1_seed,
* dropout1_is_test.
*/
DropoutParam
(
const
framework
::
ExecutionContext
&
context
,
const
int
dropout_index
)
{
std
::
string
pre_fix
=
"dropout"
;
std
::
string
str_index
=
std
::
to_string
(
dropout_index
);
if
(
dropout_index
>
0
)
{
pre_fix
=
pre_fix
+
str_index
+
"_"
;
}
else
{
pre_fix
=
pre_fix
+
"_"
;
}
dropout_prob
=
context
.
Attr
<
float
>
(
pre_fix
+
"prob"
);
auto
&
dropout_implementation
=
context
.
Attr
<
std
::
string
>
(
pre_fix
+
"implementation"
);
is_upscale_in_train
=
(
dropout_implementation
==
"upscale_in_train"
);
is_test
=
context
.
Attr
<
bool
>
(
pre_fix
+
"is_test"
);
fix_seed
=
context
.
Attr
<
bool
>
(
pre_fix
+
"fix_seed"
);
std
::
string
str_seed
=
"Dropout"
;
if
(
dropout_index
>
0
)
{
str_seed
=
str_seed
+
str_index
+
"Seed"
;
}
else
{
str_seed
=
str_seed
+
"Seed"
;
}
tensor_seed
=
context
.
HasInput
(
str_seed
)
?
context
.
Input
<
Tensor
>
(
str_seed
)
:
nullptr
;
seed_val
=
context
.
Attr
<
int
>
(
pre_fix
+
"seed"
);
}
int
UpdateSeedAndIncrement
(
const
platform
::
CUDADeviceContext
&
ctx
,
const
int
offset
)
{
uint64_t
tmp_increment
;
GetSeedDataAndIncrement
(
ctx
,
tensor_seed
,
fix_seed
,
seed_val
,
offset
,
&
seed
,
&
tmp_increment
);
increment
=
static_cast
<
int
>
(
tmp_increment
);
return
increment
;
}
};
template
<
typename
T
,
typename
MaskType
>
class
FusedDropoutHelper
{
private:
int
GetIncrement
(
const
platform
::
CUDADeviceContext
&
ctx
)
{
const
int
VecSize
=
MAX_CACHE_BYTES
/
sizeof
(
T
);
const
int
real_vec_size
=
cols_
%
VecSize
==
0
?
VecSize
:
1
;
auto
config
=
Get1DBlocksAnd2DGrids
(
ctx
,
static_cast
<
uint64_t
>
(
rows_
),
static_cast
<
uint64_t
>
(
cols_
),
real_vec_size
);
int
increment
=
((
cols_
-
1
)
/
(
config
.
thread_per_block
.
x
*
config
.
block_per_grid
.
x
*
real_vec_size
)
+
1
)
*
real_vec_size
;
increment
=
dropout_param_
.
UpdateSeedAndIncrement
(
ctx
,
increment
);
return
increment
;
}
public:
FusedDropoutHelper
()
{}
FusedDropoutHelper
(
const
platform
::
CUDADeviceContext
&
ctx
,
const
int
rows
,
const
int
cols
,
const
DropoutParam
&
dropout_param
)
{
rows_
=
rows
;
cols_
=
cols
;
dropout_param_
=
dropout_param
;
}
// out = residual + dropout( src + bias )
void
ResidualDropoutBias
(
const
platform
::
CUDADeviceContext
&
ctx
,
const
T
*
src
,
const
T
*
residual
,
const
T
*
bias
,
T
*
out
,
MaskType
*
mask
)
{
auto
increment
=
GetIncrement
(
ctx
);
LaunchResidualDropoutBias
<
T
,
MaskType
>
(
rows_
,
cols_
,
increment
,
dropout_param_
.
seed
,
dropout_param_
.
dropout_prob
,
dropout_param_
.
is_test
,
dropout_param_
.
is_upscale_in_train
,
src
,
residual
,
bias
,
mask
,
out
,
ctx
);
}
void
ResidualDropoutBiasGrad
(
const
platform
::
CUDADeviceContext
&
ctx
,
const
T
*
d_out
,
const
MaskType
*
mask
,
T
*
d_src
,
T
*
d_residual
,
T
*
d_bias
)
{
LaunchResidualDropoutBiasGrad
<
T
,
uint8_t
>
(
d_out
,
mask
,
dropout_param_
.
dropout_prob
,
dropout_param_
.
is_upscale_in_train
,
rows_
,
cols_
,
d_src
,
d_bias
,
ctx
);
auto
cuda_place
=
BOOST_GET_CONST
(
platform
::
CUDAPlace
,
ctx
.
GetPlace
());
memory
::
Copy
(
cuda_place
,
d_residual
,
cuda_place
,
d_out
,
rows_
*
cols_
*
sizeof
(
T
),
ctx
.
stream
());
}
// out = dropout(activation(src + bias))
void
DropoutActBias
(
const
platform
::
CUDADeviceContext
&
ctx
,
const
T
*
src
,
const
T
*
bias
,
const
std
::
string
&
act_method
,
T
*
out
,
MaskType
*
mask
)
{
auto
increment
=
GetIncrement
(
ctx
);
if
(
act_method
==
"gelu"
)
{
GeluFunctor
<
T
>
gelu
;
LaunchDropoutActBias
<
T
,
MaskType
,
GeluFunctor
<
T
>>
(
gelu
,
dropout_param_
.
seed
,
rows_
,
cols_
,
dropout_param_
.
increment
,
dropout_param_
.
dropout_prob
,
dropout_param_
.
is_upscale_in_train
,
dropout_param_
.
is_test
,
src
,
bias
,
out
,
mask
,
ctx
);
}
else
if
(
act_method
==
"relu"
)
{
math
::
ReluFunctor
<
T
>
relu
;
LaunchDropoutActBias
<
T
,
MaskType
,
math
::
ReluFunctor
<
T
>>
(
relu
,
dropout_param_
.
seed
,
rows_
,
cols_
,
increment
,
dropout_param_
.
dropout_prob
,
dropout_param_
.
is_upscale_in_train
,
dropout_param_
.
is_test
,
src
,
bias
,
out
,
mask
,
ctx
);
}
else
{
PADDLE_THROW
(
platform
::
errors
::
InvalidArgument
(
"Currently only supports gelu or relu activation functions!"
));
}
}
void
DropoutActBiasGrad
(
const
platform
::
CUDADeviceContext
&
ctx
,
const
T
*
dout
,
const
T
*
src
,
const
T
*
bias
,
const
MaskType
*
mask
,
T
*
d_src
,
T
*
d_bias
,
const
std
::
string
&
act_method
)
{
if
(
act_method
==
"gelu"
)
{
GeluGradFunctor
<
T
>
gelu_grad
;
LaunchDropoutActBiasGrad
<
T
,
MaskType
,
GeluGradFunctor
<
T
>>
(
gelu_grad
,
dout
,
mask
,
src
,
bias
,
dropout_param_
.
dropout_prob
,
dropout_param_
.
is_upscale_in_train
,
rows_
,
cols_
,
d_src
,
d_bias
,
ctx
);
}
else
if
(
act_method
==
"relu"
)
{
math
::
ReluGradFunctor
<
T
>
relu_grad
;
LaunchDropoutActBiasGrad
<
T
,
MaskType
,
math
::
ReluGradFunctor
<
T
>>
(
relu_grad
,
dout
,
mask
,
src
,
bias
,
dropout_param_
.
dropout_prob
,
dropout_param_
.
is_upscale_in_train
,
rows_
,
cols_
,
d_src
,
d_bias
,
ctx
);
}
else
{
PADDLE_THROW
(
platform
::
errors
::
InvalidArgument
(
"Currently only supports gelu or relu activation functions!"
));
}
}
protected:
int
rows_
;
int
cols_
;
DropoutParam
dropout_param_
;
};
template
<
typename
T
,
typename
MaskType
>
class
FusedDropoutLayerNormHelper
:
public
FusedDropoutHelper
<
T
,
MaskType
>
{
public:
FusedDropoutLayerNormHelper
()
{}
FusedDropoutLayerNormHelper
(
const
int
rows
,
const
int
cols
,
const
float
epsilon
)
{
using
U
=
LayerNormParamType
<
T
>
;
this
->
rows_
=
rows
;
this
->
cols_
=
cols
;
epsilon_
=
epsilon
;
}
FusedDropoutLayerNormHelper
(
const
platform
::
CUDADeviceContext
&
ctx
,
const
int
rows
,
const
int
cols
,
const
DropoutParam
&
dropout_param
,
const
float
epsilon
)
:
FusedDropoutHelper
<
T
,
MaskType
>
(
ctx
,
rows
,
cols
,
dropout_param
)
{
using
U
=
LayerNormParamType
<
T
>
;
epsilon_
=
epsilon
;
}
// call layer_norm
void
LayerNorm
(
const
platform
::
CUDADeviceContext
&
ctx
,
const
T
*
src
,
const
LayerNormParamType
<
T
>*
gamma
,
const
LayerNormParamType
<
T
>*
beta
,
T
*
out
,
LayerNormParamType
<
T
>*
mean
,
LayerNormParamType
<
T
>*
variance
)
{
using
U
=
LayerNormParamType
<
T
>
;
switch
(
GetDesiredBlockDim
(
this
->
cols_
))
{
FIXED_BLOCK_DIM_CASE
(
LayerNormForward
<
T
,
U
,
kBlockDim
><<<
this
->
rows_
,
kBlockDim
,
0
,
ctx
.
stream
()
>>>
(
src
,
gamma
,
beta
,
out
,
mean
,
variance
,
epsilon_
,
this
->
cols_
));
}
}
void
LayerNormGrad
(
const
platform
::
CUDADeviceContext
&
ctx
,
const
T
*
dout
,
const
T
*
src
,
const
LayerNormParamType
<
T
>*
gamma
,
const
LayerNormParamType
<
T
>*
mean
,
const
LayerNormParamType
<
T
>*
variance
,
T
*
d_src
,
LayerNormParamType
<
T
>*
d_scale
,
LayerNormParamType
<
T
>*
d_bias
)
{
using
U
=
LayerNormParamType
<
T
>
;
LayerNormBackward
<
T
,
U
>
(
src
,
dout
,
gamma
,
mean
,
variance
,
d_src
,
d_scale
,
d_bias
,
epsilon_
,
this
->
rows_
,
this
->
cols_
,
ctx
);
}
// out = layernorm(residual + dropout(src + bias))
void
LayernormResidualDropoutBias
(
const
platform
::
CUDADeviceContext
&
ctx
,
const
T
*
src
,
const
T
*
residual
,
const
T
*
bias
,
const
LayerNormParamType
<
T
>*
gamma
,
const
LayerNormParamType
<
T
>*
beta
,
T
*
dropout_out
,
MaskType
*
mask
,
T
*
out
,
LayerNormParamType
<
T
>*
mean
,
LayerNormParamType
<
T
>*
variance
)
{
using
U
=
LayerNormParamType
<
T
>
;
int
vec_size
=
MAX_CACHE_BYTES
/
sizeof
(
T
);
if
(
this
->
cols_
%
vec_size
!=
0
)
{
vec_size
=
1
;
}
int
threads
=
GetDesiredBlockDim
(
this
->
cols_
/
vec_size
);
int
increment
=
((
this
->
cols_
-
1
)
/
(
threads
*
vec_size
)
+
1
)
*
vec_size
;
increment
=
this
->
dropout_param_
.
UpdateSeedAndIncrement
(
ctx
,
increment
);
LaunchLayernormResidualDropoutBias
<
T
,
MaskType
>
(
this
->
rows_
,
this
->
cols_
,
increment
,
this
->
dropout_param_
.
seed
,
this
->
dropout_param_
.
dropout_prob
,
epsilon_
,
this
->
dropout_param_
.
is_upscale_in_train
,
this
->
dropout_param_
.
is_test
,
src
,
residual
,
bias
,
gamma
,
beta
,
mask
,
dropout_out
,
out
,
mean
,
variance
,
ctx
);
}
void
LayernormResidualDropoutBiasGrad
(
const
platform
::
CUDADeviceContext
&
ctx
,
const
T
*
d_out
,
const
T
*
layernorm_src
,
const
MaskType
*
mask
,
const
LayerNormParamType
<
T
>*
gamma
,
const
LayerNormParamType
<
T
>*
mean
,
const
LayerNormParamType
<
T
>*
variance
,
T
*
d_layernorm_src
,
LayerNormParamType
<
T
>*
d_scale
,
LayerNormParamType
<
T
>*
d_layernorm_bias
,
T
*
d_dropout_src
,
T
*
d_bias
,
T
*
d_residual
)
{
using
U
=
LayerNormParamType
<
T
>
;
LayerNormBackward
<
T
,
U
>
(
layernorm_src
,
d_out
,
gamma
,
mean
,
variance
,
d_layernorm_src
,
d_scale
,
d_layernorm_bias
,
epsilon_
,
this
->
rows_
,
this
->
cols_
,
ctx
);
this
->
ResidualDropoutBiasGrad
(
ctx
,
d_layernorm_src
,
mask
,
d_dropout_src
,
d_residual
,
d_bias
);
}
protected:
float
epsilon_
;
};
}
// namespace operators
}
// namespace paddle
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录