未验证 提交 e8794250 编写于 作者: F fuqianya 提交者: GitHub

[PaddlePaddle Hackathon] add Squeezenet (#36066)

* add squeezenet
上级 db8425ec
......@@ -54,8 +54,9 @@ class TestPretrainedModel(unittest.TestCase):
def test_models(self):
arches = [
'mobilenet_v1', 'mobilenet_v2', 'resnet18', 'vgg16', 'alexnet',
'resnext50_32x4d', 'inception_v3', 'densenet121', 'googlenet',
'shufflenet_v2_x0_25', 'shufflenet_v2_swish'
'resnext50_32x4d', 'inception_v3', 'densenet121', 'squeezenet1_0',
'squeezenet1_1', 'googlenet', 'shufflenet_v2_x0_25',
'shufflenet_v2_swish'
]
for arch in arches:
self.infer(arch)
......
......@@ -85,6 +85,12 @@ class TestVisonModels(unittest.TestCase):
def test_densenet264(self):
self.models_infer('densenet264')
def test_squeezenet1_0(self):
self.models_infer('squeezenet1_0')
def test_squeezenet1_1(self):
self.models_infer('squeezenet1_1')
def test_alexnet(self):
self.models_infer('alexnet')
......
......@@ -38,6 +38,9 @@ from .models import MobileNetV1 # noqa: F401
from .models import mobilenet_v1 # noqa: F401
from .models import MobileNetV2 # noqa: F401
from .models import mobilenet_v2 # noqa: F401
from .models import SqueezeNet # noqa: F401
from .models import squeezenet1_0 # noqa: F401
from .models import squeezenet1_1 # noqa: F401
from .models import VGG # noqa: F401
from .models import vgg11 # noqa: F401
from .models import vgg13 # noqa: F401
......
......@@ -45,6 +45,9 @@ from .resnext import resnext152_32x4d # noqa: F401
from .resnext import resnext152_64x4d # noqa: F401
from .inceptionv3 import InceptionV3 # noqa: F401
from .inceptionv3 import inception_v3 # noqa: F401
from .squeezenet import SqueezeNet # noqa: F401
from .squeezenet import squeezenet1_0 # noqa: F401
from .squeezenet import squeezenet1_1 # noqa: F401
from .googlenet import GoogLeNet # noqa: F401
from .googlenet import googlenet # noqa: F401
from .shufflenetv2 import ShuffleNetV2 # noqa: F401
......@@ -90,6 +93,9 @@ __all__ = [ #noqa
'resnext152_64x4d',
'InceptionV3',
'inception_v3',
'SqueezeNet',
'squeezenet1_0',
'squeezenet1_1',
'GoogLeNet',
'googlenet',
'ShuffleNetV2',
......
# copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import paddle
import paddle.nn as nn
import paddle.nn.functional as F
from paddle.nn import Conv2D, Dropout
from paddle.nn import AdaptiveAvgPool2D, MaxPool2D
from paddle.fluid.param_attr import ParamAttr
from paddle.utils.download import get_weights_path_from_url
__all__ = []
model_urls = {
'squeezenet1_0':
('https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SqueezeNet1_0_pretrained.pdparams',
'30b95af60a2178f03cf9b66cd77e1db1'),
'squeezenet1_1':
('https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SqueezeNet1_1_pretrained.pdparams',
'a11250d3a1f91d7131fd095ebbf09eee'),
}
class MakeFireConv(nn.Layer):
def __init__(self, input_channels, output_channels, filter_size, padding=0):
super(MakeFireConv, self).__init__()
self._conv = Conv2D(
input_channels,
output_channels,
filter_size,
padding=padding,
weight_attr=ParamAttr(),
bias_attr=ParamAttr())
def forward(self, x):
x = self._conv(x)
x = F.relu(x)
return x
class MakeFire(nn.Layer):
def __init__(self, input_channels, squeeze_channels, expand1x1_channels,
expand3x3_channels):
super(MakeFire, self).__init__()
self._conv = MakeFireConv(input_channels, squeeze_channels, 1)
self._conv_path1 = MakeFireConv(squeeze_channels, expand1x1_channels, 1)
self._conv_path2 = MakeFireConv(
squeeze_channels, expand3x3_channels, 3, padding=1)
def forward(self, inputs):
x = self._conv(inputs)
x1 = self._conv_path1(x)
x2 = self._conv_path2(x)
return paddle.concat([x1, x2], axis=1)
class SqueezeNet(nn.Layer):
"""SqueezeNet model from
`"SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <0.5MB model size"
<https://arxiv.org/pdf/1602.07360.pdf>`_
Args:
version (str): version of squeezenet, which can be "1.0" or "1.1".
num_classes (int): output dim of last fc layer. Default: 1000.
with_pool (bool): use pool before the last fc layer or not. Default: True.
Examples:
.. code-block:: python
import paddle
from paddle.vision.models import SqueezeNet
# build v1.0 model
model = SqueezeNet(version='1.0')
# build v1.1 model
# model = SqueezeNet(version='1.1')
x = paddle.rand([1, 3, 224, 224])
out = model(x)
print(out.shape)
"""
def __init__(self, version, num_classes=1000, with_pool=True):
super(SqueezeNet, self).__init__()
self.version = version
self.num_classes = num_classes
self.with_pool = with_pool
supported_versions = ['1.0', '1.1']
assert version in supported_versions, \
"supported versions are {} but input version is {}".format(
supported_versions, version)
if self.version == "1.0":
self._conv = Conv2D(
3,
96,
7,
stride=2,
weight_attr=ParamAttr(),
bias_attr=ParamAttr())
self._pool = MaxPool2D(kernel_size=3, stride=2, padding=0)
self._conv1 = MakeFire(96, 16, 64, 64)
self._conv2 = MakeFire(128, 16, 64, 64)
self._conv3 = MakeFire(128, 32, 128, 128)
self._conv4 = MakeFire(256, 32, 128, 128)
self._conv5 = MakeFire(256, 48, 192, 192)
self._conv6 = MakeFire(384, 48, 192, 192)
self._conv7 = MakeFire(384, 64, 256, 256)
self._conv8 = MakeFire(512, 64, 256, 256)
else:
self._conv = Conv2D(
3,
64,
3,
stride=2,
padding=1,
weight_attr=ParamAttr(),
bias_attr=ParamAttr())
self._pool = MaxPool2D(kernel_size=3, stride=2, padding=0)
self._conv1 = MakeFire(64, 16, 64, 64)
self._conv2 = MakeFire(128, 16, 64, 64)
self._conv3 = MakeFire(128, 32, 128, 128)
self._conv4 = MakeFire(256, 32, 128, 128)
self._conv5 = MakeFire(256, 48, 192, 192)
self._conv6 = MakeFire(384, 48, 192, 192)
self._conv7 = MakeFire(384, 64, 256, 256)
self._conv8 = MakeFire(512, 64, 256, 256)
self._drop = Dropout(p=0.5, mode="downscale_in_infer")
self._conv9 = Conv2D(
512, num_classes, 1, weight_attr=ParamAttr(), bias_attr=ParamAttr())
self._avg_pool = AdaptiveAvgPool2D(1)
def forward(self, inputs):
x = self._conv(inputs)
x = F.relu(x)
x = self._pool(x)
if self.version == "1.0":
x = self._conv1(x)
x = self._conv2(x)
x = self._conv3(x)
x = self._pool(x)
x = self._conv4(x)
x = self._conv5(x)
x = self._conv6(x)
x = self._conv7(x)
x = self._pool(x)
x = self._conv8(x)
else:
x = self._conv1(x)
x = self._conv2(x)
x = self._pool(x)
x = self._conv3(x)
x = self._conv4(x)
x = self._pool(x)
x = self._conv5(x)
x = self._conv6(x)
x = self._conv7(x)
x = self._conv8(x)
if self.num_classes > 0:
x = self._drop(x)
x = self._conv9(x)
if self.with_pool:
x = F.relu(x)
x = self._avg_pool(x)
x = paddle.squeeze(x, axis=[2, 3])
return x
def _squeezenet(arch, version, pretrained, **kwargs):
model = SqueezeNet(version, **kwargs)
if pretrained:
assert arch in model_urls, "{} model do not have a pretrained model now, you should set pretrained=False".format(
arch)
weight_path = get_weights_path_from_url(model_urls[arch][0],
model_urls[arch][1])
param = paddle.load(weight_path)
model.set_dict(param)
return model
def squeezenet1_0(pretrained=False, **kwargs):
"""SqueezeNet v1.0 model
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet. Default: False.
Examples:
.. code-block:: python
from paddle.vision.models import squeezenet1_0
# build model
model = squeezenet1_0()
# build model and load imagenet pretrained weight
# model = squeezenet1_0(pretrained=True)
"""
return _squeezenet('squeezenet1_0', '1.0', pretrained, **kwargs)
def squeezenet1_1(pretrained=False, **kwargs):
"""SqueezeNet v1.1 model
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet. Default: False.
Examples:
.. code-block:: python
from paddle.vision.models import squeezenet1_1
# build model
model = squeezenet1_1()
# build model and load imagenet pretrained weight
# model = squeezenet1_1(pretrained=True)
"""
return _squeezenet('squeezenet1_1', '1.1', pretrained, **kwargs)
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册