From e8794250bcb3d959a61f535a27afe8d69afae609 Mon Sep 17 00:00:00 2001 From: fuqianya Date: Wed, 3 Nov 2021 15:32:40 +0800 Subject: [PATCH] [PaddlePaddle Hackathon] add Squeezenet (#36066) * add squeezenet --- python/paddle/tests/test_pretrained_model.py | 5 +- python/paddle/tests/test_vision_models.py | 6 + python/paddle/vision/__init__.py | 3 + python/paddle/vision/models/__init__.py | 6 + python/paddle/vision/models/squeezenet.py | 240 +++++++++++++++++++ 5 files changed, 258 insertions(+), 2 deletions(-) create mode 100644 python/paddle/vision/models/squeezenet.py diff --git a/python/paddle/tests/test_pretrained_model.py b/python/paddle/tests/test_pretrained_model.py index 6112d08fe3..913caec733 100644 --- a/python/paddle/tests/test_pretrained_model.py +++ b/python/paddle/tests/test_pretrained_model.py @@ -54,8 +54,9 @@ class TestPretrainedModel(unittest.TestCase): def test_models(self): arches = [ 'mobilenet_v1', 'mobilenet_v2', 'resnet18', 'vgg16', 'alexnet', - 'resnext50_32x4d', 'inception_v3', 'densenet121', 'googlenet', - 'shufflenet_v2_x0_25', 'shufflenet_v2_swish' + 'resnext50_32x4d', 'inception_v3', 'densenet121', 'squeezenet1_0', + 'squeezenet1_1', 'googlenet', 'shufflenet_v2_x0_25', + 'shufflenet_v2_swish' ] for arch in arches: self.infer(arch) diff --git a/python/paddle/tests/test_vision_models.py b/python/paddle/tests/test_vision_models.py index 29e00e73e2..48ea1b80c9 100644 --- a/python/paddle/tests/test_vision_models.py +++ b/python/paddle/tests/test_vision_models.py @@ -85,6 +85,12 @@ class TestVisonModels(unittest.TestCase): def test_densenet264(self): self.models_infer('densenet264') + def test_squeezenet1_0(self): + self.models_infer('squeezenet1_0') + + def test_squeezenet1_1(self): + self.models_infer('squeezenet1_1') + def test_alexnet(self): self.models_infer('alexnet') diff --git a/python/paddle/vision/__init__.py b/python/paddle/vision/__init__.py index 22a42b6d31..54f293d7f5 100644 --- a/python/paddle/vision/__init__.py +++ b/python/paddle/vision/__init__.py @@ -38,6 +38,9 @@ from .models import MobileNetV1 # noqa: F401 from .models import mobilenet_v1 # noqa: F401 from .models import MobileNetV2 # noqa: F401 from .models import mobilenet_v2 # noqa: F401 +from .models import SqueezeNet # noqa: F401 +from .models import squeezenet1_0 # noqa: F401 +from .models import squeezenet1_1 # noqa: F401 from .models import VGG # noqa: F401 from .models import vgg11 # noqa: F401 from .models import vgg13 # noqa: F401 diff --git a/python/paddle/vision/models/__init__.py b/python/paddle/vision/models/__init__.py index a66d77fc88..e9a6af32d4 100644 --- a/python/paddle/vision/models/__init__.py +++ b/python/paddle/vision/models/__init__.py @@ -45,6 +45,9 @@ from .resnext import resnext152_32x4d # noqa: F401 from .resnext import resnext152_64x4d # noqa: F401 from .inceptionv3 import InceptionV3 # noqa: F401 from .inceptionv3 import inception_v3 # noqa: F401 +from .squeezenet import SqueezeNet # noqa: F401 +from .squeezenet import squeezenet1_0 # noqa: F401 +from .squeezenet import squeezenet1_1 # noqa: F401 from .googlenet import GoogLeNet # noqa: F401 from .googlenet import googlenet # noqa: F401 from .shufflenetv2 import ShuffleNetV2 # noqa: F401 @@ -90,6 +93,9 @@ __all__ = [ #noqa 'resnext152_64x4d', 'InceptionV3', 'inception_v3', + 'SqueezeNet', + 'squeezenet1_0', + 'squeezenet1_1', 'GoogLeNet', 'googlenet', 'ShuffleNetV2', diff --git a/python/paddle/vision/models/squeezenet.py b/python/paddle/vision/models/squeezenet.py new file mode 100644 index 0000000000..804be2622c --- /dev/null +++ b/python/paddle/vision/models/squeezenet.py @@ -0,0 +1,240 @@ +# copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +from __future__ import absolute_import +from __future__ import division +from __future__ import print_function + +import paddle +import paddle.nn as nn +import paddle.nn.functional as F + +from paddle.nn import Conv2D, Dropout +from paddle.nn import AdaptiveAvgPool2D, MaxPool2D +from paddle.fluid.param_attr import ParamAttr +from paddle.utils.download import get_weights_path_from_url + +__all__ = [] + +model_urls = { + 'squeezenet1_0': + ('https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SqueezeNet1_0_pretrained.pdparams', + '30b95af60a2178f03cf9b66cd77e1db1'), + 'squeezenet1_1': + ('https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SqueezeNet1_1_pretrained.pdparams', + 'a11250d3a1f91d7131fd095ebbf09eee'), +} + + +class MakeFireConv(nn.Layer): + def __init__(self, input_channels, output_channels, filter_size, padding=0): + super(MakeFireConv, self).__init__() + self._conv = Conv2D( + input_channels, + output_channels, + filter_size, + padding=padding, + weight_attr=ParamAttr(), + bias_attr=ParamAttr()) + + def forward(self, x): + x = self._conv(x) + x = F.relu(x) + return x + + +class MakeFire(nn.Layer): + def __init__(self, input_channels, squeeze_channels, expand1x1_channels, + expand3x3_channels): + super(MakeFire, self).__init__() + self._conv = MakeFireConv(input_channels, squeeze_channels, 1) + self._conv_path1 = MakeFireConv(squeeze_channels, expand1x1_channels, 1) + self._conv_path2 = MakeFireConv( + squeeze_channels, expand3x3_channels, 3, padding=1) + + def forward(self, inputs): + x = self._conv(inputs) + x1 = self._conv_path1(x) + x2 = self._conv_path2(x) + return paddle.concat([x1, x2], axis=1) + + +class SqueezeNet(nn.Layer): + """SqueezeNet model from + `"SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <0.5MB model size" + `_ + + Args: + version (str): version of squeezenet, which can be "1.0" or "1.1". + num_classes (int): output dim of last fc layer. Default: 1000. + with_pool (bool): use pool before the last fc layer or not. Default: True. + + Examples: + .. code-block:: python + import paddle + from paddle.vision.models import SqueezeNet + + # build v1.0 model + model = SqueezeNet(version='1.0') + + # build v1.1 model + # model = SqueezeNet(version='1.1') + + x = paddle.rand([1, 3, 224, 224]) + out = model(x) + + print(out.shape) + + """ + + def __init__(self, version, num_classes=1000, with_pool=True): + super(SqueezeNet, self).__init__() + self.version = version + self.num_classes = num_classes + self.with_pool = with_pool + + supported_versions = ['1.0', '1.1'] + assert version in supported_versions, \ + "supported versions are {} but input version is {}".format( + supported_versions, version) + + if self.version == "1.0": + self._conv = Conv2D( + 3, + 96, + 7, + stride=2, + weight_attr=ParamAttr(), + bias_attr=ParamAttr()) + self._pool = MaxPool2D(kernel_size=3, stride=2, padding=0) + self._conv1 = MakeFire(96, 16, 64, 64) + self._conv2 = MakeFire(128, 16, 64, 64) + self._conv3 = MakeFire(128, 32, 128, 128) + self._conv4 = MakeFire(256, 32, 128, 128) + self._conv5 = MakeFire(256, 48, 192, 192) + self._conv6 = MakeFire(384, 48, 192, 192) + self._conv7 = MakeFire(384, 64, 256, 256) + self._conv8 = MakeFire(512, 64, 256, 256) + else: + self._conv = Conv2D( + 3, + 64, + 3, + stride=2, + padding=1, + weight_attr=ParamAttr(), + bias_attr=ParamAttr()) + self._pool = MaxPool2D(kernel_size=3, stride=2, padding=0) + self._conv1 = MakeFire(64, 16, 64, 64) + self._conv2 = MakeFire(128, 16, 64, 64) + self._conv3 = MakeFire(128, 32, 128, 128) + self._conv4 = MakeFire(256, 32, 128, 128) + self._conv5 = MakeFire(256, 48, 192, 192) + self._conv6 = MakeFire(384, 48, 192, 192) + self._conv7 = MakeFire(384, 64, 256, 256) + self._conv8 = MakeFire(512, 64, 256, 256) + + self._drop = Dropout(p=0.5, mode="downscale_in_infer") + self._conv9 = Conv2D( + 512, num_classes, 1, weight_attr=ParamAttr(), bias_attr=ParamAttr()) + self._avg_pool = AdaptiveAvgPool2D(1) + + def forward(self, inputs): + x = self._conv(inputs) + x = F.relu(x) + x = self._pool(x) + if self.version == "1.0": + x = self._conv1(x) + x = self._conv2(x) + x = self._conv3(x) + x = self._pool(x) + x = self._conv4(x) + x = self._conv5(x) + x = self._conv6(x) + x = self._conv7(x) + x = self._pool(x) + x = self._conv8(x) + else: + x = self._conv1(x) + x = self._conv2(x) + x = self._pool(x) + x = self._conv3(x) + x = self._conv4(x) + x = self._pool(x) + x = self._conv5(x) + x = self._conv6(x) + x = self._conv7(x) + x = self._conv8(x) + if self.num_classes > 0: + x = self._drop(x) + x = self._conv9(x) + if self.with_pool: + x = F.relu(x) + x = self._avg_pool(x) + x = paddle.squeeze(x, axis=[2, 3]) + + return x + + +def _squeezenet(arch, version, pretrained, **kwargs): + model = SqueezeNet(version, **kwargs) + if pretrained: + assert arch in model_urls, "{} model do not have a pretrained model now, you should set pretrained=False".format( + arch) + weight_path = get_weights_path_from_url(model_urls[arch][0], + model_urls[arch][1]) + param = paddle.load(weight_path) + model.set_dict(param) + + return model + + +def squeezenet1_0(pretrained=False, **kwargs): + """SqueezeNet v1.0 model + + Args: + pretrained (bool): If True, returns a model pre-trained on ImageNet. Default: False. + + Examples: + .. code-block:: python + + from paddle.vision.models import squeezenet1_0 + + # build model + model = squeezenet1_0() + + # build model and load imagenet pretrained weight + # model = squeezenet1_0(pretrained=True) + """ + return _squeezenet('squeezenet1_0', '1.0', pretrained, **kwargs) + + +def squeezenet1_1(pretrained=False, **kwargs): + """SqueezeNet v1.1 model + + Args: + pretrained (bool): If True, returns a model pre-trained on ImageNet. Default: False. + + Examples: + .. code-block:: python + + from paddle.vision.models import squeezenet1_1 + + # build model + model = squeezenet1_1() + + # build model and load imagenet pretrained weight + # model = squeezenet1_1(pretrained=True) + """ + return _squeezenet('squeezenet1_1', '1.1', pretrained, **kwargs) -- GitLab