提交 a804a2ae 编写于 作者: Q Qiao Longfei

complete parameter recv

上级 a0585d08
...@@ -27,6 +27,7 @@ ...@@ -27,6 +27,7 @@
#include "paddle/fluid/operators/distributed/rpc_client.h" #include "paddle/fluid/operators/distributed/rpc_client.h"
#include "paddle/fluid/operators/distributed/variable_response.h" #include "paddle/fluid/operators/distributed/variable_response.h"
#include "paddle/fluid/operators/distributed_ops/send_recv_util.h" #include "paddle/fluid/operators/distributed_ops/send_recv_util.h"
#include "paddle/fluid/operators/strided_memcpy.h"
namespace paddle { namespace paddle {
namespace operators { namespace operators {
...@@ -39,11 +40,10 @@ using DDim = framework::DDim; ...@@ -39,11 +40,10 @@ using DDim = framework::DDim;
template <typename T> template <typename T>
void ParameterRecv<T>::operator()(const std::string &var_name, void ParameterRecv<T>::operator()(const std::string &var_name,
const std::vector<std::string> &send_varnames, const std::vector<std::string> &recv_varnames,
const std::vector<std::string> &epmap, const std::vector<std::string> &epmap,
const std::vector<int64_t> &height_sections,
const framework::ExecutionContext &ctx, const framework::ExecutionContext &ctx,
const framework::Scope &scope, bool sync) { const framework::Scope &scope) {
framework::Scope *local_scope = scope.NewTmpScope(); framework::Scope *local_scope = scope.NewTmpScope();
platform::DeviceContextPool &pool = platform::DeviceContextPool::Instance(); platform::DeviceContextPool &pool = platform::DeviceContextPool::Instance();
...@@ -53,118 +53,41 @@ void ParameterRecv<T>::operator()(const std::string &var_name, ...@@ -53,118 +53,41 @@ void ParameterRecv<T>::operator()(const std::string &var_name,
distributed::RPCClient::GetInstance<RPCCLIENT_T>( distributed::RPCClient::GetInstance<RPCCLIENT_T>(
ctx.Attr<int>("trainer_id")); ctx.Attr<int>("trainer_id"));
auto *send_var = scope.FindVar(var_name); auto *recv_var = scope.FindVar(var_name);
size_t out_num = send_varnames.size();
if (send_var->IsType<framework::LoDTensor>()) { std::vector<framework::Tensor *> recved_tensors;
if (out_num > 1) {
auto &send_tensor = send_var->Get<framework::LoDTensor>(); // recv all vars to local scope
auto &send_tensor_dims = send_tensor.dims(); if (recv_var->IsType<framework::LoDTensor>()) {
std::vector<framework::DDim> outs_dims; std::vector<distributed::VarHandlePtr> rets;
outs_dims.reserve(out_num); for (size_t i = 0; i < recv_varnames.size(); i++) {
auto &recv_var_name = recv_varnames[i];
// infer output shape framework::Tensor *t =
PADDLE_ENFORCE_EQ(height_sections.size(), out_num, local_scope->Var(recv_var_name)->GetMutable<framework::LoDTensor>();
"tensor split sections size" recved_tensors.push_back(t);
"should be equal to output size."); VLOG(3) << "recv " << recv_var_name << " from " << epmap[i];
for (size_t i = 0; i < out_num; ++i) { rets.push_back(rpc_client->AsyncGetVar(epmap[i], cpu_ctx, *local_scope,
auto dim = send_tensor_dims; recv_var_name, recv_var_name));
dim[0] = height_sections[i];
outs_dims.push_back(dim);
}
// create output var in local scope
size_t row_offset = 0;
for (auto i = 0; i < out_num; ++i) {
framework::Tensor *out = local_scope->Var(send_varnames[i])
->GetMutable<framework::LoDTensor>();
*out = send_tensor.Slice(row_offset, row_offset + outs_dims[i][0]);
row_offset += outs_dims[i][0];
}
} }
} else if (send_var->IsType<framework::SelectedRows>()) { for (size_t i = 0; i < rets.size(); i++) {
auto &send_slr = send_var->Get<framework::SelectedRows>(); PADDLE_ENFORCE(rets[i]->Wait(), "internal error in RPCClient");
auto abs_sections = ToAbsoluteSection(height_sections);
auto send_rows = send_slr.rows();
std::vector<std::vector<int>> outs_rows_idx;
std::vector<std::vector<int>> outs_dense_idx;
outs_rows_idx.resize(out_num);
outs_dense_idx.resize(out_num);
auto row_numel = send_slr.value().numel() / send_slr.value().dims()[0];
auto src = send_slr.value().data<T>();
// create output var in local scope
std::vector<framework::SelectedRows *> outs;
for (auto &name : send_varnames) {
auto *out = local_scope->Var(name)->GetMutable<framework::SelectedRows>();
outs.push_back(out);
}
// split rows index into output sparse vars
for (size_t i = 0; i < send_rows.size(); ++i) {
int out_idx = FindOutIdx(send_rows[i], abs_sections);
outs_rows_idx[out_idx].push_back(send_rows[i]);
outs_dense_idx[out_idx].push_back(i);
}
auto place = ctx.GetPlace();
for (size_t i = 0; i < outs_rows_idx.size(); ++i) {
auto rows_idx = outs_rows_idx[i];
outs[i]->set_height(height_sections[i]);
auto dims = send_slr.GetCompleteDims();
dims[0] = rows_idx.size();
outs[i]->mutable_value()->mutable_data<T>(dims, send_slr.place());
outs[i]->mutable_rows()->clear();
if (rows_idx.size() > 0) {
for (auto idx : rows_idx) {
outs[i]->mutable_rows()->push_back(idx - abs_sections[i]);
}
auto dst = outs[i]->mutable_value()->mutable_data<T>(ctx.GetPlace());
for (size_t j = 0; j < rows_idx.size(); j++) {
if (platform::is_cpu_place(place)) {
memory::Copy(
platform::CPUPlace(), dst + j * row_numel, platform::CPUPlace(),
src + outs_dense_idx[i][j] * row_numel, sizeof(T) * row_numel);
} else {
#ifdef PADDLE_WITH_CUDA
auto stream = ctx.cuda_device_context().stream();
memory::Copy(platform::CUDAPlace(), dst + j * row_numel,
platform::CUDAPlace(),
src + outs_dense_idx[i][j] * row_numel,
sizeof(T) * row_numel, stream);
#else
PADDLE_THROW("Paddle is not compiled with GPU");
#endif
}
}
}
PADDLE_ENFORCE_EQ(rows_idx.size(), outs[i]->rows().size(),
"rows should has the same size with tensor dim 0");
} }
} else { } else {
PADDLE_THROW("unsupported var type to send!"); PADDLE_THROW("unsupported var type to send!");
} }
std::vector<distributed::VarHandlePtr> rets; // concat recved tensor into one var
for (size_t i = 0; i < send_varnames.size(); i++) { {
auto &send_var_name = send_varnames[i]; size_t output_offset = 0;
auto &endpoint = epmap[i]; framework::Tensor *recv_tensor =
if (NeedSend(*local_scope, send_var_name)) { recv_var->GetMutable<framework::LoDTensor>();
VLOG(3) << "sending " << send_var_name << " to " << endpoint; for (auto *in : recved_tensors) {
rets.push_back(rpc_client->AsyncSendVar(endpoint, cpu_ctx, *local_scope, auto in_stride = framework::stride_numel(in->dims());
send_var_name)); auto out_stride = framework::stride_numel(recv_tensor->dims());
} else { StridedNumelCopyWithAxis<T>(
VLOG(3) << "don't send non-initialized variable: " << send_varnames[i]; ctx.device_context(), 0, recv_tensor->data<T>() + output_offset,
} out_stride, in->data<T>(), in_stride, in_stride[0]);
} output_offset += in_stride[0];
// note!! only support sync send now
if (true || sync) {
for (size_t i = 0; i < rets.size(); i++) {
PADDLE_ENFORCE(rets[i]->Wait(), "internal error in RPCClient");
} }
} }
......
...@@ -26,11 +26,10 @@ namespace distributed { ...@@ -26,11 +26,10 @@ namespace distributed {
template <typename T> template <typename T>
struct ParameterRecv { struct ParameterRecv {
void operator()(const std::string &var_name, void operator()(const std::string &var_name,
const std::vector<std::string> &send_varnames, const std::vector<std::string> &recv_varnames,
const std::vector<std::string> &epmap, const std::vector<std::string> &epmap,
const std::vector<int64_t> &height_sections,
const framework::ExecutionContext &context, const framework::ExecutionContext &context,
const framework::Scope &scope, bool sync); const framework::Scope &scope);
}; };
}; // namespace distributed }; // namespace distributed
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册