Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
Paddle
提交
a804a2ae
P
Paddle
项目概览
BaiXuePrincess
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
a804a2ae
编写于
2月 08, 2019
作者:
Q
Qiao Longfei
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
complete parameter recv
上级
a0585d08
变更
2
隐藏空白更改
内联
并排
Showing
2 changed file
with
34 addition
and
112 deletion
+34
-112
paddle/fluid/operators/distributed/parameter_recv.cc
paddle/fluid/operators/distributed/parameter_recv.cc
+32
-109
paddle/fluid/operators/distributed/parameter_recv.h
paddle/fluid/operators/distributed/parameter_recv.h
+2
-3
未找到文件。
paddle/fluid/operators/distributed/parameter_recv.cc
浏览文件 @
a804a2ae
...
...
@@ -27,6 +27,7 @@
#include "paddle/fluid/operators/distributed/rpc_client.h"
#include "paddle/fluid/operators/distributed/variable_response.h"
#include "paddle/fluid/operators/distributed_ops/send_recv_util.h"
#include "paddle/fluid/operators/strided_memcpy.h"
namespace
paddle
{
namespace
operators
{
...
...
@@ -39,11 +40,10 @@ using DDim = framework::DDim;
template
<
typename
T
>
void
ParameterRecv
<
T
>::
operator
()(
const
std
::
string
&
var_name
,
const
std
::
vector
<
std
::
string
>
&
send
_varnames
,
const
std
::
vector
<
std
::
string
>
&
recv
_varnames
,
const
std
::
vector
<
std
::
string
>
&
epmap
,
const
std
::
vector
<
int64_t
>
&
height_sections
,
const
framework
::
ExecutionContext
&
ctx
,
const
framework
::
Scope
&
scope
,
bool
sync
)
{
const
framework
::
Scope
&
scope
)
{
framework
::
Scope
*
local_scope
=
scope
.
NewTmpScope
();
platform
::
DeviceContextPool
&
pool
=
platform
::
DeviceContextPool
::
Instance
();
...
...
@@ -53,118 +53,41 @@ void ParameterRecv<T>::operator()(const std::string &var_name,
distributed
::
RPCClient
::
GetInstance
<
RPCCLIENT_T
>
(
ctx
.
Attr
<
int
>
(
"trainer_id"
));
auto
*
send_var
=
scope
.
FindVar
(
var_name
);
size_t
out_num
=
send_varnames
.
size
();
if
(
send_var
->
IsType
<
framework
::
LoDTensor
>
())
{
if
(
out_num
>
1
)
{
auto
&
send_tensor
=
send_var
->
Get
<
framework
::
LoDTensor
>
();
auto
&
send_tensor_dims
=
send_tensor
.
dims
();
std
::
vector
<
framework
::
DDim
>
outs_dims
;
outs_dims
.
reserve
(
out_num
);
// infer output shape
PADDLE_ENFORCE_EQ
(
height_sections
.
size
(),
out_num
,
"tensor split sections size"
"should be equal to output size."
);
for
(
size_t
i
=
0
;
i
<
out_num
;
++
i
)
{
auto
dim
=
send_tensor_dims
;
dim
[
0
]
=
height_sections
[
i
];
outs_dims
.
push_back
(
dim
);
}
// create output var in local scope
size_t
row_offset
=
0
;
for
(
auto
i
=
0
;
i
<
out_num
;
++
i
)
{
framework
::
Tensor
*
out
=
local_scope
->
Var
(
send_varnames
[
i
])
->
GetMutable
<
framework
::
LoDTensor
>
();
*
out
=
send_tensor
.
Slice
(
row_offset
,
row_offset
+
outs_dims
[
i
][
0
]);
row_offset
+=
outs_dims
[
i
][
0
];
}
auto
*
recv_var
=
scope
.
FindVar
(
var_name
);
std
::
vector
<
framework
::
Tensor
*>
recved_tensors
;
// recv all vars to local scope
if
(
recv_var
->
IsType
<
framework
::
LoDTensor
>
())
{
std
::
vector
<
distributed
::
VarHandlePtr
>
rets
;
for
(
size_t
i
=
0
;
i
<
recv_varnames
.
size
();
i
++
)
{
auto
&
recv_var_name
=
recv_varnames
[
i
];
framework
::
Tensor
*
t
=
local_scope
->
Var
(
recv_var_name
)
->
GetMutable
<
framework
::
LoDTensor
>
();
recved_tensors
.
push_back
(
t
);
VLOG
(
3
)
<<
"recv "
<<
recv_var_name
<<
" from "
<<
epmap
[
i
];
rets
.
push_back
(
rpc_client
->
AsyncGetVar
(
epmap
[
i
],
cpu_ctx
,
*
local_scope
,
recv_var_name
,
recv_var_name
));
}
}
else
if
(
send_var
->
IsType
<
framework
::
SelectedRows
>
())
{
auto
&
send_slr
=
send_var
->
Get
<
framework
::
SelectedRows
>
();
auto
abs_sections
=
ToAbsoluteSection
(
height_sections
);
auto
send_rows
=
send_slr
.
rows
();
std
::
vector
<
std
::
vector
<
int
>>
outs_rows_idx
;
std
::
vector
<
std
::
vector
<
int
>>
outs_dense_idx
;
outs_rows_idx
.
resize
(
out_num
);
outs_dense_idx
.
resize
(
out_num
);
auto
row_numel
=
send_slr
.
value
().
numel
()
/
send_slr
.
value
().
dims
()[
0
];
auto
src
=
send_slr
.
value
().
data
<
T
>
();
// create output var in local scope
std
::
vector
<
framework
::
SelectedRows
*>
outs
;
for
(
auto
&
name
:
send_varnames
)
{
auto
*
out
=
local_scope
->
Var
(
name
)
->
GetMutable
<
framework
::
SelectedRows
>
();
outs
.
push_back
(
out
);
}
// split rows index into output sparse vars
for
(
size_t
i
=
0
;
i
<
send_rows
.
size
();
++
i
)
{
int
out_idx
=
FindOutIdx
(
send_rows
[
i
],
abs_sections
);
outs_rows_idx
[
out_idx
].
push_back
(
send_rows
[
i
]);
outs_dense_idx
[
out_idx
].
push_back
(
i
);
}
auto
place
=
ctx
.
GetPlace
();
for
(
size_t
i
=
0
;
i
<
outs_rows_idx
.
size
();
++
i
)
{
auto
rows_idx
=
outs_rows_idx
[
i
];
outs
[
i
]
->
set_height
(
height_sections
[
i
]);
auto
dims
=
send_slr
.
GetCompleteDims
();
dims
[
0
]
=
rows_idx
.
size
();
outs
[
i
]
->
mutable_value
()
->
mutable_data
<
T
>
(
dims
,
send_slr
.
place
());
outs
[
i
]
->
mutable_rows
()
->
clear
();
if
(
rows_idx
.
size
()
>
0
)
{
for
(
auto
idx
:
rows_idx
)
{
outs
[
i
]
->
mutable_rows
()
->
push_back
(
idx
-
abs_sections
[
i
]);
}
auto
dst
=
outs
[
i
]
->
mutable_value
()
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
for
(
size_t
j
=
0
;
j
<
rows_idx
.
size
();
j
++
)
{
if
(
platform
::
is_cpu_place
(
place
))
{
memory
::
Copy
(
platform
::
CPUPlace
(),
dst
+
j
*
row_numel
,
platform
::
CPUPlace
(),
src
+
outs_dense_idx
[
i
][
j
]
*
row_numel
,
sizeof
(
T
)
*
row_numel
);
}
else
{
#ifdef PADDLE_WITH_CUDA
auto
stream
=
ctx
.
cuda_device_context
().
stream
();
memory
::
Copy
(
platform
::
CUDAPlace
(),
dst
+
j
*
row_numel
,
platform
::
CUDAPlace
(),
src
+
outs_dense_idx
[
i
][
j
]
*
row_numel
,
sizeof
(
T
)
*
row_numel
,
stream
);
#else
PADDLE_THROW
(
"Paddle is not compiled with GPU"
);
#endif
}
}
}
PADDLE_ENFORCE_EQ
(
rows_idx
.
size
(),
outs
[
i
]
->
rows
().
size
(),
"rows should has the same size with tensor dim 0"
);
for
(
size_t
i
=
0
;
i
<
rets
.
size
();
i
++
)
{
PADDLE_ENFORCE
(
rets
[
i
]
->
Wait
(),
"internal error in RPCClient"
);
}
}
else
{
PADDLE_THROW
(
"unsupported var type to send!"
);
}
std
::
vector
<
distributed
::
VarHandlePtr
>
rets
;
for
(
size_t
i
=
0
;
i
<
send_varnames
.
size
();
i
++
)
{
auto
&
send_var_name
=
send_varnames
[
i
];
auto
&
endpoint
=
epmap
[
i
];
if
(
NeedSend
(
*
local_scope
,
send_var_name
))
{
VLOG
(
3
)
<<
"sending "
<<
send_var_name
<<
" to "
<<
endpoint
;
rets
.
push_back
(
rpc_client
->
AsyncSendVar
(
endpoint
,
cpu_ctx
,
*
local_scope
,
send_var_name
));
}
else
{
VLOG
(
3
)
<<
"don't send non-initialized variable: "
<<
send_varnames
[
i
];
}
}
// note!! only support sync send now
if
(
true
||
sync
)
{
for
(
size_t
i
=
0
;
i
<
rets
.
size
();
i
++
)
{
PADDLE_ENFORCE
(
rets
[
i
]
->
Wait
(),
"internal error in RPCClient"
);
// concat recved tensor into one var
{
size_t
output_offset
=
0
;
framework
::
Tensor
*
recv_tensor
=
recv_var
->
GetMutable
<
framework
::
LoDTensor
>
();
for
(
auto
*
in
:
recved_tensors
)
{
auto
in_stride
=
framework
::
stride_numel
(
in
->
dims
());
auto
out_stride
=
framework
::
stride_numel
(
recv_tensor
->
dims
());
StridedNumelCopyWithAxis
<
T
>
(
ctx
.
device_context
(),
0
,
recv_tensor
->
data
<
T
>
()
+
output_offset
,
out_stride
,
in
->
data
<
T
>
(),
in_stride
,
in_stride
[
0
]);
output_offset
+=
in_stride
[
0
];
}
}
...
...
paddle/fluid/operators/distributed/parameter_recv.h
浏览文件 @
a804a2ae
...
...
@@ -26,11 +26,10 @@ namespace distributed {
template
<
typename
T
>
struct
ParameterRecv
{
void
operator
()(
const
std
::
string
&
var_name
,
const
std
::
vector
<
std
::
string
>
&
send
_varnames
,
const
std
::
vector
<
std
::
string
>
&
recv
_varnames
,
const
std
::
vector
<
std
::
string
>
&
epmap
,
const
std
::
vector
<
int64_t
>
&
height_sections
,
const
framework
::
ExecutionContext
&
context
,
const
framework
::
Scope
&
scope
,
bool
sync
);
const
framework
::
Scope
&
scope
);
};
};
// namespace distributed
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录