Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
Paddle
提交
12e6dbbc
P
Paddle
项目概览
BaiXuePrincess
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
12e6dbbc
编写于
10月 14, 2021
作者:
Z
Zhang Zheng
提交者:
GitHub
10月 14, 2021
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Add the complete code and related files of resnet_unit_op (#36366)
上级
bed4fb27
变更
8
隐藏空白更改
内联
并排
Showing
8 changed file
with
768 addition
and
40 deletion
+768
-40
cmake/operators.cmake
cmake/operators.cmake
+1
-1
paddle/fluid/operators/fused/CMakeLists.txt
paddle/fluid/operators/fused/CMakeLists.txt
+5
-1
paddle/fluid/operators/fused/cudnn_bn_add_relu_test.cc
paddle/fluid/operators/fused/cudnn_bn_add_relu_test.cc
+3
-3
paddle/fluid/operators/fused/cudnn_fusion_helper.h
paddle/fluid/operators/fused/cudnn_fusion_helper.h
+6
-4
paddle/fluid/operators/fused/cudnn_scale_bias_add_relu.cu.h
paddle/fluid/operators/fused/cudnn_scale_bias_add_relu.cu.h
+18
-17
paddle/fluid/operators/fused/resnet_unit_op.cc
paddle/fluid/operators/fused/resnet_unit_op.cc
+410
-0
paddle/fluid/operators/fused/resnet_unit_op.cu
paddle/fluid/operators/fused/resnet_unit_op.cu
+298
-0
python/paddle/fluid/contrib/mixed_precision/fp16_utils.py
python/paddle/fluid/contrib/mixed_precision/fp16_utils.py
+27
-14
未找到文件。
cmake/operators.cmake
浏览文件 @
12e6dbbc
...
...
@@ -216,7 +216,7 @@ function(op_library TARGET)
"fusion_transpose_flatten_concat_op"
"fusion_conv_inception_op"
"sync_batch_norm_op"
"sparse_attention_op"
"dgc_op"
"fused_fc_elementwise_layernorm_op"
"skip_layernorm_op"
"multihead_matmul_op"
"fusion_group_op"
"fused_bn_activation_op"
"fused_embedding_eltwise_layernorm_op"
"fusion_gru_op"
"fusion_lstm_op"
"fused_bn_add_activation_op"
)
"fused_bn_add_activation_op"
"resnet_unit_op"
)
if
(
"
${
TARGET
}
"
STREQUAL
"
${
manual_pybind_op
}
"
)
set
(
pybind_flag 1
)
endif
()
...
...
paddle/fluid/operators/fused/CMakeLists.txt
浏览文件 @
12e6dbbc
...
...
@@ -16,7 +16,8 @@ register_operators(EXCLUDES
fusion_gru_op
fusion_lstm_op
fused_bn_add_activation_op
fused_transformer_op
)
fused_transformer_op
resnet_unit_op
)
# fusion_gru_op does not have CUDA kernel
op_library
(
fusion_gru_op
)
...
...
@@ -78,7 +79,10 @@ if (WITH_GPU OR WITH_ROCM)
nv_test
(
test_fused_dropout_act_bias SRCS fused_dropout_act_bias_test.cu DEPS tensor op_registry dropout_op layer_norm_op device_context generator memory
)
nv_test
(
test_fused_layernorm_residual_dropout_bias SRCS fused_layernorm_residual_dropout_bias_test.cu DEPS tensor op_registry dropout_op layer_norm_op device_context generator memory
)
endif
()
# resnet_unit needs cudnn 8.0 above
if
((
NOT WITH_ROCM
)
AND
(
NOT
${
CUDNN_VERSION
}
VERSION_LESS 8000
))
op_library
(
resnet_unit_op
)
file
(
APPEND
${
pybind_file
}
"USE_CUDA_ONLY_OP(resnet_unit);
\n
"
)
cc_test
(
test_cudnn_norm_conv SRCS cudnn_norm_conv_test.cc DEPS conv_op blas im2col vol2col depthwise_conv eigen_function tensor op_registry device_context generator memory
)
cc_test
(
test_cudnn_bn_add_relu SRCS cudnn_bn_add_relu_test.cc DEPS batch_norm_op fused_bn_add_activation_op tensor op_registry device_context generator memory
)
endif
()
...
...
paddle/fluid/operators/fused/cudnn_bn_add_relu_test.cc
浏览文件 @
12e6dbbc
...
...
@@ -631,8 +631,8 @@ class CudnnBNAddReluTester {
op
::
CudnnScaleBiasAddRelu
<
T
>
sbar_op
(
ctx
,
act_type_
,
fuse_add_
,
has_shortcut_
,
data_shape
,
param_shape
,
bitmask_shape
);
sbar_op
.
Forward
(
ctx
,
x
,
equiv_scale_x
,
equiv_bias_x
,
z
,
equiv_scale_z
,
equiv_bias_z
,
&
y
,
&
bitmask
);
sbar_op
.
Forward
(
ctx
,
x
,
equiv_scale_x
,
equiv_bias_x
,
&
z
,
&
equiv_scale_z
,
&
equiv_bias_z
,
&
y
,
&
bitmask
);
TensorCopySync
(
mean_x
,
platform
::
CPUPlace
(),
cpu_mean_x
);
TensorCopySync
(
var_x
,
platform
::
CPUPlace
(),
cpu_var_x
);
...
...
@@ -690,7 +690,7 @@ class CudnnBNAddReluTester {
op
::
CudnnScaleBiasAddRelu
<
T
>
sbar_op
(
ctx
,
act_type
,
true
,
false
,
data_shape
,
param_shape
,
bitmask_shape
);
sbar_op
.
Backward
(
ctx
,
dy
,
x
,
bn_scale
,
bn_bias
,
saved_mean
,
saved_var
,
bitmask
,
&
dx
,
&
dz
,
&
dscale
,
&
dbias
,
eps_
);
&
bitmask
,
&
dx
,
&
dz
,
&
dscale
,
&
dbias
,
eps_
);
TensorCopySync
(
dx
,
platform
::
CPUPlace
(),
cpu_dx
);
TensorCopySync
(
dz
,
platform
::
CPUPlace
(),
cpu_dz
);
...
...
paddle/fluid/operators/fused/cudnn_fusion_helper.h
浏览文件 @
12e6dbbc
...
...
@@ -38,10 +38,12 @@ class CudnnFusionOp {
&
op_variant_params_
,
op_id
));
}
~
CudnnFusionOp
()
{
dynload
::
cudnnDestroyFusedOpsVariantParamPack
(
op_variant_params_
);
dynload
::
cudnnDestroyFusedOpsConstParamPack
(
op_const_params_
);
dynload
::
cudnnDestroyFusedOpsPlan
(
op_
);
~
CudnnFusionOp
()
PADDLE_MAY_THROW
{
PADDLE_ENFORCE_CUDA_SUCCESS
(
dynload
::
cudnnDestroyFusedOpsVariantParamPack
(
op_variant_params_
));
PADDLE_ENFORCE_CUDA_SUCCESS
(
dynload
::
cudnnDestroyFusedOpsConstParamPack
(
op_const_params_
));
PADDLE_ENFORCE_CUDA_SUCCESS
(
dynload
::
cudnnDestroyFusedOpsPlan
(
op_
));
}
// Execute fused op
...
...
paddle/fluid/operators/fused/cudnn_scale_bias_add_relu.cu.h
浏览文件 @
12e6dbbc
...
...
@@ -94,13 +94,13 @@ template <typename T>
class
CudnnScaleBiasAddRelu
{
public:
CudnnScaleBiasAddRelu
(
const
platform
::
CUDADeviceContext
&
ctx
,
const
std
::
string
&
act_type
,
bool
fuse
d
_add
,
const
std
::
string
&
act_type
,
bool
fuse_add
,
bool
has_shortcut
,
const
std
::
vector
<
int
>
&
data_shape
,
const
std
::
vector
<
int
>
&
param_shape
,
const
std
::
vector
<
int
>
&
bitmask_shape
)
:
fwd_op_
(
CUDNN_FUSED_SCALE_BIAS_ADD_ACTIVATION_GEN_BITMASK
),
bwd_op_
(
CUDNN_FUSED_DACTIVATION_FORK_DBATCHNORM
)
{
fuse
d_add_
=
fused
_add
;
fuse
_add_
=
fuse
_add
;
has_shortcut_
=
has_shortcut
;
args_
.
Set
(
act_type
,
data_shape
,
param_shape
,
bitmask_shape
);
}
...
...
@@ -108,8 +108,8 @@ class CudnnScaleBiasAddRelu {
~
CudnnScaleBiasAddRelu
()
{}
void
Forward
(
const
platform
::
CUDADeviceContext
&
ctx
,
const
Tensor
&
x
,
const
Tensor
&
x_scale
,
const
Tensor
&
x_bias
,
const
Tensor
&
z
,
const
Tensor
&
z_scale
,
const
Tensor
&
z_bias
,
Tensor
*
out
,
const
Tensor
&
x_scale
,
const
Tensor
&
x_bias
,
const
Tensor
*
z
,
const
Tensor
*
z_scale
,
const
Tensor
*
z_bias
,
Tensor
*
out
,
Tensor
*
bitmask
)
{
ForwardInit
(
ctx
);
auto
handle
=
ctx
.
cudnn_handle
();
...
...
@@ -125,15 +125,15 @@ class CudnnScaleBiasAddRelu {
fwd_op_
.
SetOpVariantParamAttrPtr
(
CUDNN_PTR_BN_EQSCALE
,
x_scale_ptr
);
fwd_op_
.
SetOpVariantParamAttrPtr
(
CUDNN_PTR_BN_EQBIAS
,
x_bias_ptr
);
if
(
has_shortcut_
)
{
T
*
z_ptr
=
const_cast
<
T
*>
(
z
.
data
<
T
>
());
T
*
z_scale_ptr
=
const_cast
<
T
*>
(
z_scale
.
data
<
T
>
());
T
*
z_bias_ptr
=
const_cast
<
T
*>
(
z_bias
.
data
<
T
>
());
T
*
z_ptr
=
const_cast
<
T
*>
(
z
->
data
<
T
>
());
T
*
z_scale_ptr
=
const_cast
<
T
*>
(
z_scale
->
data
<
T
>
());
T
*
z_bias_ptr
=
const_cast
<
T
*>
(
z_bias
->
data
<
T
>
());
fwd_op_
.
SetOpVariantParamAttrPtr
(
CUDNN_PTR_ZDATA
,
z_ptr
);
fwd_op_
.
SetOpVariantParamAttrPtr
(
CUDNN_PTR_BN_Z_EQSCALE
,
z_scale_ptr
);
fwd_op_
.
SetOpVariantParamAttrPtr
(
CUDNN_PTR_BN_Z_EQBIAS
,
z_bias_ptr
);
}
else
{
if
(
fuse
d
_add_
)
{
T
*
z_ptr
=
const_cast
<
T
*>
(
z
.
data
<
T
>
());
if
(
fuse_add_
)
{
T
*
z_ptr
=
const_cast
<
T
*>
(
z
->
data
<
T
>
());
fwd_op_
.
SetOpVariantParamAttrPtr
(
CUDNN_PTR_ZDATA
,
z_ptr
);
}
}
...
...
@@ -160,7 +160,7 @@ class CudnnScaleBiasAddRelu {
void
Backward
(
const
platform
::
CUDADeviceContext
&
ctx
,
const
Tensor
&
dy
,
const
Tensor
&
x
,
const
Tensor
&
scale
,
const
Tensor
&
bias
,
const
Tensor
&
saved_mean
,
const
Tensor
&
saved_invstd
,
const
Tensor
&
bitmask
,
Tensor
*
dx
,
Tensor
*
dz
,
Tensor
*
dscale
,
const
Tensor
*
bitmask
,
Tensor
*
dx
,
Tensor
*
dz
,
Tensor
*
dscale
,
Tensor
*
dbias
,
double
eps
)
{
BackwardInit
(
ctx
);
auto
handle
=
ctx
.
cudnn_handle
();
...
...
@@ -175,7 +175,8 @@ class CudnnScaleBiasAddRelu {
float
*
bias_ptr
=
const_cast
<
float
*>
(
bias
.
data
<
float
>
());
float
*
saved_mean_ptr
=
const_cast
<
float
*>
(
saved_mean
.
data
<
float
>
());
float
*
saved_invstd_ptr
=
const_cast
<
float
*>
(
saved_invstd
.
data
<
float
>
());
int32_t
*
bitmask_ptr
=
const_cast
<
int32_t
*>
(
bitmask
.
data
<
int32_t
>
());
int32_t
*
bitmask_ptr
=
bitmask
?
const_cast
<
int32_t
*>
(
bitmask
->
data
<
int32_t
>
())
:
nullptr
;
T
*
dx_ptr
=
dx
->
mutable_data
<
T
>
(
place
);
T
*
dz_ptr
=
dz
?
dz
->
mutable_data
<
T
>
(
place
)
:
nullptr
;
float
*
dscale_ptr
=
dscale
?
dscale
->
mutable_data
<
float
>
(
place
)
:
nullptr
;
...
...
@@ -199,7 +200,7 @@ class CudnnScaleBiasAddRelu {
bwd_op_
.
SetOpVariantParamAttrPtr
(
CUDNN_PTR_BN_DBIAS
,
dbias_ptr
);
bwd_op_
.
SetOpVariantParamAttrPtr
<
double
>
(
CUDNN_SCALAR_DOUBLE_BN_EPSILON
,
&
eps
);
if
(
has_shortcut_
||
fuse
d
_add_
)
{
if
(
has_shortcut_
||
fuse_add_
)
{
bwd_op_
.
SetOpVariantParamAttrPtr
(
CUDNN_PTR_DZDATA
,
dz_ptr
);
}
...
...
@@ -226,14 +227,14 @@ class CudnnScaleBiasAddRelu {
{
CUDNN_PARAM_ZDATA_PLACEHOLDER
,
CUDNN_PARAM_BN_Z_EQSCALE_PLACEHOLDER
,
CUDNN_PARAM_BN_Z_EQBIAS_PLACEHOLDER
},
CUDNN_PTR_16B_ALIGNED
);
}
else
if
(
fuse
d
_add_
)
{
}
else
if
(
fuse_add_
)
{
fwd_op_
.
SetOpConstParamAttr
(
CUDNN_PARAM_ZDATA_PLACEHOLDER
,
CUDNN_PTR_16B_ALIGNED
);
}
// input desc
fwd_op_
.
SetOpConstParamDesc
(
CUDNN_PARAM_XDESC
,
args_
.
in_desc
.
desc
());
if
(
has_shortcut_
||
fuse
d
_add_
)
{
if
(
has_shortcut_
||
fuse_add_
)
{
fwd_op_
.
SetOpConstParamDesc
(
CUDNN_PARAM_ZDESC
,
args_
.
in_desc
.
desc
());
}
...
...
@@ -271,7 +272,7 @@ class CudnnScaleBiasAddRelu {
CUDNN_PARAM_BN_DSCALE_PLACEHOLDER
,
CUDNN_PARAM_BN_DBIAS_PLACEHOLDER
,
CUDNN_PARAM_ACTIVATION_BITMASK_PLACEHOLDER
},
CUDNN_PTR_16B_ALIGNED
);
if
(
has_shortcut_
||
fuse
d
_add_
)
{
if
(
has_shortcut_
||
fuse_add_
)
{
bwd_op_
.
SetOpConstParamAttr
(
CUDNN_PARAM_DZDATA_PLACEHOLDER
,
CUDNN_PTR_16B_ALIGNED
);
}
...
...
@@ -279,7 +280,7 @@ class CudnnScaleBiasAddRelu {
// input desc
bwd_op_
.
SetOpConstParamDesc
(
CUDNN_PARAM_XDESC
,
args_
.
in_desc
.
desc
());
bwd_op_
.
SetOpConstParamDesc
(
CUDNN_PARAM_DXDESC
,
args_
.
in_desc
.
desc
());
if
(
has_shortcut_
||
fuse
d
_add_
)
{
if
(
has_shortcut_
||
fuse_add_
)
{
bwd_op_
.
SetOpConstParamDesc
(
CUDNN_PARAM_DZDESC
,
args_
.
in_desc
.
desc
());
}
...
...
@@ -303,7 +304,7 @@ class CudnnScaleBiasAddRelu {
CUDNN_BATCHNORM_SPATIAL_PERSISTENT
);
}
bool
fuse
d
_add_
=
false
;
bool
fuse_add_
=
false
;
bool
has_shortcut_
=
false
;
size_t
fwd_workspace_byte_
;
size_t
bwd_workspace_byte_
;
...
...
paddle/fluid/operators/fused/resnet_unit_op.cc
0 → 100644
浏览文件 @
12e6dbbc
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/platform/float16.h"
namespace
paddle
{
namespace
operators
{
using
Tensor
=
framework
::
Tensor
;
// Shape of bitmask
static
framework
::
DDim
GetBitmaskDims
(
std
::
vector
<
int
>
out_shape
)
{
int
c
=
out_shape
.
back
();
int64_t
nhw
=
std
::
accumulate
(
out_shape
.
begin
(),
out_shape
.
end
(),
1
,
std
::
multiplies
<
int
>
())
/
c
;
int32_t
c_int32_elems
=
((
c
+
63
)
&
~
63
)
/
32
;
int32_t
nhw_int32_elems
=
((
nhw
+
31
)
&
~
31
);
std
::
vector
<
int
>
bitmask_shape
=
{
nhw_int32_elems
,
c_int32_elems
,
1
};
return
framework
::
make_ddim
(
bitmask_shape
);
}
class
ResNetUnitOp
:
public
framework
::
OperatorWithKernel
{
public:
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
{
// Check input
OP_INOUT_CHECK
(
ctx
->
HasInput
(
"X"
),
"Input"
,
"X"
,
"ResNetUnitOp"
);
OP_INOUT_CHECK
(
ctx
->
HasInput
(
"FilterX"
),
"Input"
,
"FilterX"
,
"ResNetUnitOp"
);
OP_INOUT_CHECK
(
ctx
->
HasInput
(
"ScaleX"
),
"Input"
,
"ScaleX"
,
"ResNetUnitOp"
);
OP_INOUT_CHECK
(
ctx
->
HasInput
(
"BiasX"
),
"Input"
,
"BiasX"
,
"ResNetUnitOp"
);
OP_INOUT_CHECK
(
ctx
->
HasInput
(
"MeanX"
),
"Input"
,
"MeanX"
,
"ResNetUnitOp"
);
OP_INOUT_CHECK
(
ctx
->
HasInput
(
"VarX"
),
"Input"
,
"VarX"
,
"ResNetUnitOp"
);
bool
fuse_add
=
ctx
->
Attrs
().
Get
<
bool
>
(
"fuse_add"
);
bool
has_shortcut
=
ctx
->
Attrs
().
Get
<
bool
>
(
"has_shortcut"
);
if
(
fuse_add
||
has_shortcut
)
{
OP_INOUT_CHECK
(
ctx
->
HasInput
(
"Z"
),
"Input"
,
"Z"
,
"ResNetUnitOp"
);
}
if
(
has_shortcut
)
{
OP_INOUT_CHECK
(
ctx
->
HasInput
(
"FilterZ"
),
"Input"
,
"FilterZ"
,
"ResNetUnitOp"
);
OP_INOUT_CHECK
(
ctx
->
HasInput
(
"ScaleZ"
),
"Input"
,
"ScaleZ"
,
"ResNetUnitOp"
);
OP_INOUT_CHECK
(
ctx
->
HasInput
(
"BiasZ"
),
"Input"
,
"BiasZ"
,
"ResNetUnitOp"
);
OP_INOUT_CHECK
(
ctx
->
HasInput
(
"MeanZ"
),
"Input"
,
"MeanZ"
,
"ResNetUnitOp"
);
OP_INOUT_CHECK
(
ctx
->
HasInput
(
"VarZ"
),
"Input"
,
"VarZ"
,
"ResNetUnitOp"
);
}
// Check output
OP_INOUT_CHECK
(
ctx
->
HasOutput
(
"Y"
),
"Output"
,
"Y"
,
"ResNetUnitOp"
);
OP_INOUT_CHECK
(
ctx
->
HasOutput
(
"BitMask"
),
"Output"
,
"BitMask"
,
"ResNetUnitOp"
);
OP_INOUT_CHECK
(
ctx
->
HasOutput
(
"ConvX"
),
"Output"
,
"ConvX"
,
"ResNetUnitOp"
);
OP_INOUT_CHECK
(
ctx
->
HasOutput
(
"SavedMeanX"
),
"Output"
,
"SavedMeanX"
,
"ResNetUnitOp"
);
OP_INOUT_CHECK
(
ctx
->
HasOutput
(
"SavedInvstdX"
),
"Output"
,
"SavedInvstdX"
,
"ResNetUnitOp"
);
OP_INOUT_CHECK
(
ctx
->
HasOutput
(
"RunningMeanX"
),
"Output"
,
"RunningMeanX"
,
"ResNetUnitOp"
);
OP_INOUT_CHECK
(
ctx
->
HasOutput
(
"RunningVarX"
),
"Output"
,
"RunningVarX"
,
"ResNetUnitOp"
);
if
(
has_shortcut
)
{
OP_INOUT_CHECK
(
ctx
->
HasOutput
(
"ConvZ"
),
"Output"
,
"ConvZ"
,
"ResNetUnitOp"
);
OP_INOUT_CHECK
(
ctx
->
HasOutput
(
"SavedMeanZ"
),
"Output"
,
"SavedMeanZ"
,
"ResNetUnitOp"
);
OP_INOUT_CHECK
(
ctx
->
HasOutput
(
"SavedInvstdZ"
),
"Output"
,
"SavedInvstdZ"
,
"ResNetUnitOp"
);
OP_INOUT_CHECK
(
ctx
->
HasOutput
(
"RunningMeanZ"
),
"Output"
,
"RunningMeanZ"
,
"ResNetUnitOp"
);
OP_INOUT_CHECK
(
ctx
->
HasOutput
(
"RunningVarZ"
),
"Output"
,
"RunningVarZ"
,
"ResNetUnitOp"
);
}
// make sure Mean/RunningMean and Var/RunningVar share memory
PADDLE_ENFORCE_EQ
(
ctx
->
Inputs
(
"MeanX"
)[
0
],
ctx
->
Outputs
(
"RunningMeanX"
)[
0
],
platform
::
errors
::
InvalidArgument
(
"MeanX and RunningMeanX should share the same memory"
));
PADDLE_ENFORCE_EQ
(
ctx
->
Inputs
(
"VarX"
)[
0
],
ctx
->
Outputs
(
"RunningVarX"
)[
0
],
platform
::
errors
::
InvalidArgument
(
"VarX and RunningVarX should share the same memory"
));
if
(
has_shortcut
)
{
PADDLE_ENFORCE_EQ
(
ctx
->
Inputs
(
"MeanZ"
)[
0
],
ctx
->
Outputs
(
"RunningMeanZ"
)[
0
],
platform
::
errors
::
InvalidArgument
(
"MeanZ and RunningMeanZ should share the same memory"
));
PADDLE_ENFORCE_EQ
(
ctx
->
Inputs
(
"VarZ"
)[
0
],
ctx
->
Outputs
(
"RunningVarZ"
)[
0
],
platform
::
errors
::
InvalidArgument
(
"VarZ and RunningVarZ should share the same memory"
));
}
// Check dims of inputs
const
auto
x_dims
=
ctx
->
GetInputDim
(
"X"
);
const
auto
w_dims
=
ctx
->
GetInputDim
(
"FilterX"
);
const
auto
bn_param_dims
=
ctx
->
GetInputDim
(
"ScaleX"
);
PADDLE_ENFORCE_EQ
(
x_dims
.
size
(),
4
,
platform
::
errors
::
InvalidArgument
(
"The dimensions of input "
"must equal to 4."
"But received: the shape of input "
"= [%s], the dimension of input = "
"[%d]"
,
x_dims
,
x_dims
.
size
()));
PADDLE_ENFORCE_EQ
(
w_dims
.
size
(),
4
,
platform
::
errors
::
InvalidArgument
(
"The dimensions of filter "
"must equal to 4."
"But received: the shape of filter "
"= [%s], the dimension of filter = [%d] "
,
w_dims
,
w_dims
.
size
()));
PADDLE_ENFORCE_EQ
(
bn_param_dims
.
size
(),
4
,
platform
::
errors
::
InvalidArgument
(
"The dimensions of bn param "
"must equal to 4."
"But received: the shape of bn param "
"= [%s], the dimension of bn param = [%d] "
,
bn_param_dims
,
bn_param_dims
.
size
()));
auto
data_format
=
ctx
->
Attrs
().
Get
<
std
::
string
>
(
"data_format"
);
PADDLE_ENFORCE_EQ
(
data_format
,
"NHWC"
,
platform
::
errors
::
InvalidArgument
(
"The data format must equal to NHWC. "
"But received: the data format "
"= [%s]"
,
data_format
));
// Calculate the dims of outputs
int
batch
=
x_dims
[
0
];
int
output_channel
=
w_dims
[
0
];
int
filter_size
=
w_dims
[
2
];
int
stride
=
ctx
->
Attrs
().
Get
<
int
>
(
"stride"
);
int
padding
=
ctx
->
Attrs
().
Get
<
int
>
(
"padding"
);
int
out_h
=
(
x_dims
[
1
]
+
padding
*
2
-
filter_size
)
/
stride
+
1
;
int
out_w
=
(
x_dims
[
2
]
+
padding
*
2
-
filter_size
)
/
stride
+
1
;
std
::
vector
<
int
>
out_shape
=
{
batch
,
out_h
,
out_w
,
output_channel
};
auto
y_dims
=
framework
::
make_ddim
(
out_shape
);
auto
bitmask_dims
=
GetBitmaskDims
(
out_shape
);
// Set dims of outputs
ctx
->
SetOutputDim
(
"Y"
,
y_dims
);
ctx
->
SetOutputDim
(
"BitMask"
,
bitmask_dims
);
ctx
->
SetOutputDim
(
"ConvX"
,
y_dims
);
ctx
->
SetOutputDim
(
"SavedMeanX"
,
bn_param_dims
);
ctx
->
SetOutputDim
(
"SavedInvstdX"
,
bn_param_dims
);
ctx
->
SetOutputDim
(
"RunningMeanX"
,
bn_param_dims
);
ctx
->
SetOutputDim
(
"RunningVarX"
,
bn_param_dims
);
if
(
has_shortcut
)
{
ctx
->
SetOutputDim
(
"ConvZ"
,
y_dims
);
ctx
->
SetOutputDim
(
"SavedMeanZ"
,
bn_param_dims
);
ctx
->
SetOutputDim
(
"SavedInvstdZ"
,
bn_param_dims
);
ctx
->
SetOutputDim
(
"RunningMeanZ"
,
bn_param_dims
);
ctx
->
SetOutputDim
(
"RunningVarZ"
,
bn_param_dims
);
}
}
protected:
framework
::
OpKernelType
GetExpectedKernelType
(
const
framework
::
ExecutionContext
&
ctx
)
const
{
auto
input_data_type
=
OperatorWithKernel
::
IndicateVarDataType
(
ctx
,
"X"
);
// By default, the type of the scale, bias, mean,
// and var tensors should be float when input tensor's dtype is float16.
auto
bn_param_type
=
framework
::
proto
::
VarType
::
FP32
;
PADDLE_ENFORCE_EQ
(
bn_param_type
,
ctx
.
Input
<
Tensor
>
(
"ScaleX"
)
->
type
(),
platform
::
errors
::
InvalidArgument
(
"Scale input should be of float type"
));
PADDLE_ENFORCE_EQ
(
bn_param_type
,
ctx
.
Input
<
Tensor
>
(
"BiasX"
)
->
type
(),
platform
::
errors
::
InvalidArgument
(
"Bias input should be of float type"
));
framework
::
LibraryType
library
=
framework
::
LibraryType
::
kPlain
;
framework
::
DataLayout
layout
=
framework
::
DataLayout
::
kAnyLayout
;
return
framework
::
OpKernelType
(
input_data_type
,
ctx
.
GetPlace
(),
layout
,
library
);
}
};
class
ResNetUnitOpMaker
:
public
framework
::
OpProtoAndCheckerMaker
{
public:
void
Make
()
{
AddInput
(
"X"
,
"The input 1 tensor"
);
AddInput
(
"FilterX"
,
"Filter tensor of input 1"
);
AddInput
(
"ScaleX"
,
"Scale tensor of input 1 used in batchnorm"
);
AddInput
(
"BiasX"
,
"Bias tensor of input 1 used in batchnorm"
);
AddInput
(
"MeanX"
,
"Mean tensor of input 1 used in batchnorm"
);
AddInput
(
"VarX"
,
"Variance tensor of input 1 used in batchnorm"
);
AddInput
(
"Z"
,
"The input 2 tensor"
).
AsDispensable
();
AddInput
(
"FilterZ"
,
"Filter tensor of input 2"
).
AsDispensable
();
AddInput
(
"ScaleZ"
,
"Scale tensor of input 2"
).
AsDispensable
();
AddInput
(
"BiasZ"
,
"Bias tensor of input 2"
).
AsDispensable
();
AddInput
(
"MeanZ"
,
"Mean tensor of input 2"
).
AsDispensable
();
AddInput
(
"VarZ"
,
"Variance tensor of input 2"
).
AsDispensable
();
AddOutput
(
"Y"
,
"The result of the resnet unit"
);
AddOutput
(
"BitMask"
,
"The bitmask generated after relu"
);
AddOutput
(
"ConvX"
,
"The output of input 1 after conv"
);
AddOutput
(
"SavedMeanX"
,
"Mean of input 1 in the current batch"
);
AddOutput
(
"SavedInvstdX"
,
"Invstd of input 1 in the current batch"
);
AddOutput
(
"RunningMeanX"
,
"Shared memory with MeanX"
);
AddOutput
(
"RunningVarX"
,
"Shared memory with VarX"
);
AddOutput
(
"ConvZ"
,
"The output of input 2 after conv"
).
AsDispensable
();
AddOutput
(
"SavedMeanZ"
,
"Mean of input 1 in the current batch"
)
.
AsDispensable
();
AddOutput
(
"SavedInvstdZ"
,
"Invstd of input 1 in the current batch"
)
.
AsDispensable
();
AddOutput
(
"RunningMeanZ"
,
"Shared memory with MeanZ"
).
AsDispensable
();
AddOutput
(
"RunningVarZ"
,
"Shared memory with VarZ"
).
AsDispensable
();
AddAttr
<
int
>
(
"stride"
,
""
).
SetDefault
(
1
);
AddAttr
<
int
>
(
"stride_z"
,
""
).
SetDefault
(
1
);
AddAttr
<
int
>
(
"padding"
,
""
).
SetDefault
(
0
);
AddAttr
<
int
>
(
"dilation"
,
""
).
SetDefault
(
1
);
AddAttr
<
int
>
(
"group"
,
""
).
SetDefault
(
1
);
AddAttr
<
float
>
(
"momentum"
,
""
).
SetDefault
(
0.9
);
AddAttr
<
float
>
(
"epsilon"
,
""
).
SetDefault
(
1e-5
);
AddAttr
<
std
::
string
>
(
"data_format"
,
""
).
SetDefault
(
"NHWC"
);
AddAttr
<
bool
>
(
"fuse_add"
,
""
).
SetDefault
(
false
);
AddAttr
<
bool
>
(
"has_shortcut"
,
""
).
SetDefault
(
false
);
AddAttr
<
bool
>
(
"use_global_stats"
,
""
).
SetDefault
(
false
);
AddAttr
<
bool
>
(
"is_test"
,
"(bool, default false) Set to true for inference only, false "
"for training. Some layers may run faster when this is true."
)
.
SetDefault
(
false
);
AddAttr
<
std
::
string
>
(
"act_type"
,
"The activation type to be fused."
)
.
SetDefault
(
"relu"
);
AddComment
(
R"DOC(
Fusion op of the basic unit of resnet block.
The implementation is based on the latest fusion op interface in cuDNN v8.0.
For more details:
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnFusedOps_t
)DOC"
);
}
};
class
ResNetUnitGradOp
:
public
framework
::
OperatorWithKernel
{
public:
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
{
// check input
OP_INOUT_CHECK
(
ctx
->
HasInput
(
"X"
),
"Input"
,
"X"
,
"ResNetUnitGradOp"
);
OP_INOUT_CHECK
(
ctx
->
HasInput
(
"FilterX"
),
"Input"
,
"FilterX"
,
"ResNetUnitGradOp"
);
OP_INOUT_CHECK
(
ctx
->
HasInput
(
"ConvX"
),
"Input"
,
"ConvX"
,
"ResNetUnitGradOp"
);
OP_INOUT_CHECK
(
ctx
->
HasInput
(
"ScaleX"
),
"Input"
,
"ScaleX"
,
"ResNetUnitGradOp"
);
OP_INOUT_CHECK
(
ctx
->
HasInput
(
"BiasX"
),
"Input"
,
"BiasX"
,
"ResNetUnitGradOp"
);
OP_INOUT_CHECK
(
ctx
->
HasInput
(
"SavedMeanX"
),
"Input"
,
"SavedMeanX"
,
"ResNetUnitGradOp"
);
OP_INOUT_CHECK
(
ctx
->
HasInput
(
"SavedInvstdX"
),
"Input"
,
"SavedInvstdX"
,
"ResNetUnitGradOp"
);
bool
fuse_add
=
ctx
->
Attrs
().
Get
<
bool
>
(
"fuse_add"
);
bool
has_shortcut
=
ctx
->
Attrs
().
Get
<
bool
>
(
"has_shortcut"
);
if
(
fuse_add
||
has_shortcut
)
{
OP_INOUT_CHECK
(
ctx
->
HasInput
(
"Z"
),
"Input"
,
"Z"
,
"ResNetUnitGradOp"
);
}
if
(
has_shortcut
)
{
OP_INOUT_CHECK
(
ctx
->
HasInput
(
"FilterZ"
),
"Input"
,
"FilterZ"
,
"ResNetUnitGradOp"
);
OP_INOUT_CHECK
(
ctx
->
HasInput
(
"ConvZ"
),
"Input"
,
"ConvZ"
,
"ResNetUnitGradOp"
);
OP_INOUT_CHECK
(
ctx
->
HasInput
(
"ScaleZ"
),
"Input"
,
"ScaleZ"
,
"ResNetUnitGradOp"
);
OP_INOUT_CHECK
(
ctx
->
HasInput
(
"BiasZ"
),
"Input"
,
"BiasZ"
,
"ResNetUnitGradOp"
);
OP_INOUT_CHECK
(
ctx
->
HasInput
(
"SavedMeanZ"
),
"Input"
,
"SavedMeanZ"
,
"ResNetUnitGradOp"
);
OP_INOUT_CHECK
(
ctx
->
HasInput
(
"SavedInvstdZ"
),
"Input"
,
"SavedInvstdZ"
,
"ResNetUnitGradOp"
);
}
OP_INOUT_CHECK
(
ctx
->
HasInput
(
"Y"
),
"Input"
,
"Y"
,
"ResNetUnitGradOp"
);
OP_INOUT_CHECK
(
ctx
->
HasInput
(
"BitMask"
),
"Input"
,
"BitMask"
,
"ResNetUnitGradOp"
);
OP_INOUT_CHECK
(
ctx
->
HasInput
(
framework
::
GradVarName
(
"Y"
)),
"Input"
,
framework
::
GradVarName
(
"Y"
),
"ResNetUnitGradOp"
);
// check output
OP_INOUT_CHECK
(
ctx
->
HasOutput
(
framework
::
GradVarName
(
"X"
)),
"Output"
,
framework
::
GradVarName
(
"X"
),
"ResNetUnitGradOp"
);
OP_INOUT_CHECK
(
ctx
->
HasOutput
(
framework
::
GradVarName
(
"FilterX"
)),
"Output"
,
framework
::
GradVarName
(
"FilterX"
),
"ResNetUnitGradOp"
);
OP_INOUT_CHECK
(
ctx
->
HasOutput
(
framework
::
GradVarName
(
"ScaleX"
)),
"Output"
,
framework
::
GradVarName
(
"ScaleX"
),
"ResNetUnitGradOp"
);
OP_INOUT_CHECK
(
ctx
->
HasOutput
(
framework
::
GradVarName
(
"BiasX"
)),
"Output"
,
framework
::
GradVarName
(
"BiasX"
),
"ResNetUnitGradOp"
);
if
(
fuse_add
)
{
OP_INOUT_CHECK
(
ctx
->
HasOutput
(
framework
::
GradVarName
(
"Z"
)),
"Output"
,
framework
::
GradVarName
(
"Z"
),
"ResNetUnitGradOp"
);
}
if
(
has_shortcut
)
{
OP_INOUT_CHECK
(
ctx
->
HasOutput
(
framework
::
GradVarName
(
"FilterZ"
)),
"Output"
,
framework
::
GradVarName
(
"FilterZ"
),
"ResNetUnitGradOp"
);
OP_INOUT_CHECK
(
ctx
->
HasOutput
(
framework
::
GradVarName
(
"ScaleZ"
)),
"Output"
,
framework
::
GradVarName
(
"ScaleZ"
),
"ResNetUnitGradOp"
);
OP_INOUT_CHECK
(
ctx
->
HasOutput
(
framework
::
GradVarName
(
"BiasZ"
)),
"Output"
,
framework
::
GradVarName
(
"BiasZ"
),
"ResNetUnitGradOp"
);
}
const
auto
x_dims
=
ctx
->
GetInputDim
(
"X"
);
const
auto
filter_x_dims
=
ctx
->
GetInputDim
(
"FilterX"
);
const
auto
param_dims
=
ctx
->
GetInputDim
(
"ScaleX"
);
ctx
->
SetOutputDim
(
framework
::
GradVarName
(
"X"
),
x_dims
);
ctx
->
SetOutputDim
(
framework
::
GradVarName
(
"FilterX"
),
filter_x_dims
);
ctx
->
SetOutputDim
(
framework
::
GradVarName
(
"ScaleX"
),
param_dims
);
ctx
->
SetOutputDim
(
framework
::
GradVarName
(
"BiasX"
),
param_dims
);
if
(
fuse_add
||
has_shortcut
)
{
const
auto
z_dims
=
ctx
->
GetInputDim
(
"Z"
);
ctx
->
SetOutputDim
(
framework
::
GradVarName
(
"Z"
),
z_dims
);
}
if
(
has_shortcut
)
{
const
auto
filter_z_dims
=
ctx
->
GetInputDim
(
"FilterZ"
);
ctx
->
SetOutputDim
(
framework
::
GradVarName
(
"FilterZ"
),
filter_z_dims
);
ctx
->
SetOutputDim
(
framework
::
GradVarName
(
"ScaleZ"
),
param_dims
);
ctx
->
SetOutputDim
(
framework
::
GradVarName
(
"BiasZ"
),
param_dims
);
}
}
protected:
framework
::
OpKernelType
GetExpectedKernelType
(
const
framework
::
ExecutionContext
&
ctx
)
const
{
PADDLE_ENFORCE_NOT_NULL
(
ctx
.
InputVar
(
framework
::
GradVarName
(
"Y"
)),
platform
::
errors
::
NotFound
(
"Can not find Y@GRAD in the execution context."
));
framework
::
LibraryType
library
=
framework
::
LibraryType
::
kPlain
;
framework
::
DataLayout
layout
=
framework
::
DataLayout
::
kAnyLayout
;
return
framework
::
OpKernelType
(
OperatorWithKernel
::
IndicateVarDataType
(
ctx
,
"X"
),
ctx
.
GetPlace
(),
layout
,
library
);
}
};
template
<
typename
T
>
class
ResNetUnitGradOpMaker
:
public
framework
::
SingleGradOpMaker
<
T
>
{
public:
using
framework
::
SingleGradOpMaker
<
T
>::
SingleGradOpMaker
;
protected:
void
Apply
(
GradOpPtr
<
T
>
op
)
const
override
{
op
->
SetType
(
"resnet_unit_grad"
);
op
->
SetInput
(
"X"
,
this
->
Input
(
"X"
));
op
->
SetInput
(
"FilterX"
,
this
->
Input
(
"FilterX"
));
op
->
SetInput
(
"ConvX"
,
this
->
Output
(
"ConvX"
));
op
->
SetInput
(
"ScaleX"
,
this
->
Input
(
"ScaleX"
));
op
->
SetInput
(
"BiasX"
,
this
->
Input
(
"BiasX"
));
op
->
SetInput
(
"SavedMeanX"
,
this
->
Output
(
"SavedMeanX"
));
op
->
SetInput
(
"SavedInvstdX"
,
this
->
Output
(
"SavedInvstdX"
));
op
->
SetInput
(
"Z"
,
this
->
Input
(
"Z"
));
op
->
SetInput
(
"FilterZ"
,
this
->
Input
(
"FilterZ"
));
op
->
SetInput
(
"ConvZ"
,
this
->
Output
(
"ConvZ"
));
op
->
SetInput
(
"ScaleZ"
,
this
->
Input
(
"ScaleZ"
));
op
->
SetInput
(
"BiasZ"
,
this
->
Input
(
"BiasZ"
));
op
->
SetInput
(
"SavedMeanZ"
,
this
->
Output
(
"SavedMeanZ"
));
op
->
SetInput
(
"SavedInvstdZ"
,
this
->
Output
(
"SavedInvstdZ"
));
op
->
SetInput
(
"Y"
,
this
->
Output
(
"Y"
));
op
->
SetInput
(
"BitMask"
,
this
->
Output
(
"BitMask"
));
op
->
SetInput
(
framework
::
GradVarName
(
"Y"
),
this
->
OutputGrad
(
"Y"
));
op
->
SetAttrMap
(
this
->
Attrs
());
op
->
SetOutput
(
framework
::
GradVarName
(
"X"
),
this
->
InputGrad
(
"X"
));
op
->
SetOutput
(
framework
::
GradVarName
(
"FilterX"
),
this
->
InputGrad
(
"FilterX"
));
op
->
SetOutput
(
framework
::
GradVarName
(
"ScaleX"
),
this
->
InputGrad
(
"ScaleX"
));
op
->
SetOutput
(
framework
::
GradVarName
(
"BiasX"
),
this
->
InputGrad
(
"BiasX"
));
op
->
SetOutput
(
framework
::
GradVarName
(
"Z"
),
this
->
InputGrad
(
"Z"
));
op
->
SetOutput
(
framework
::
GradVarName
(
"FilterZ"
),
this
->
InputGrad
(
"FilterZ"
));
op
->
SetOutput
(
framework
::
GradVarName
(
"ScaleZ"
),
this
->
InputGrad
(
"ScaleZ"
));
op
->
SetOutput
(
framework
::
GradVarName
(
"BiasZ"
),
this
->
InputGrad
(
"BiasZ"
));
}
};
class
ResNetUnitOpInferVarType
:
public
framework
::
PassInDtypeAndVarTypeToOutput
{
protected:
std
::
unordered_map
<
std
::
string
,
std
::
string
>&
GetInputOutputWithSameType
()
const
override
{
static
std
::
unordered_map
<
std
::
string
,
std
::
string
>
m
{{
"X"
,
/*->*/
"Y"
}};
return
m
;
}
};
}
// namespace operators
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
REGISTER_OPERATOR
(
resnet_unit
,
ops
::
ResNetUnitOp
,
ops
::
ResNetUnitOpMaker
,
ops
::
ResNetUnitOpInferVarType
,
ops
::
ResNetUnitGradOpMaker
<
paddle
::
framework
::
OpDesc
>
,
ops
::
ResNetUnitGradOpMaker
<
paddle
::
imperative
::
OpBase
>
);
REGISTER_OPERATOR
(
resnet_unit_grad
,
ops
::
ResNetUnitGradOp
);
paddle/fluid/operators/fused/resnet_unit_op.cu
0 → 100644
浏览文件 @
12e6dbbc
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/fused/cudnn_bn_stats_finalize.cu.h"
#include "paddle/fluid/operators/fused/cudnn_norm_conv.cu.h"
#include "paddle/fluid/operators/fused/cudnn_scale_bias_add_relu.cu.h"
#include "paddle/fluid/platform/float16.h"
namespace
paddle
{
namespace
operators
{
using
Tensor
=
framework
::
Tensor
;
template
<
typename
T
>
class
ResNetUnitKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
PADDLE_ENFORCE_EQ
(
platform
::
is_gpu_place
(
ctx
.
GetPlace
()),
true
,
platform
::
errors
::
PreconditionNotMet
(
"It must use CUDAPlace."
));
PADDLE_ENFORCE_EQ
(
platform
::
CudnnDataType
<
T
>::
type
,
CUDNN_DATA_HALF
,
platform
::
errors
::
Unavailable
(
"ResNetUnitOp only supports float16 for now."
));
// input x
const
Tensor
*
input_x
=
ctx
.
Input
<
Tensor
>
(
"X"
);
const
Tensor
*
filter_x
=
ctx
.
Input
<
Tensor
>
(
"FilterX"
);
const
Tensor
*
scale_x
=
ctx
.
Input
<
Tensor
>
(
"ScaleX"
);
const
Tensor
*
bias_x
=
ctx
.
Input
<
Tensor
>
(
"BiasX"
);
// norm conv
Tensor
*
conv_out_x
=
ctx
.
Output
<
Tensor
>
(
"ConvX"
);
// bn finalize
Tensor
*
saved_mean_x
=
ctx
.
Output
<
Tensor
>
(
"SavedMeanX"
);
Tensor
*
saved_invstd_x
=
ctx
.
Output
<
Tensor
>
(
"SavedInvstdX"
);
Tensor
*
running_mean_x
=
ctx
.
Output
<
Tensor
>
(
"RunningMeanX"
);
Tensor
*
running_var_x
=
ctx
.
Output
<
Tensor
>
(
"RunningVarX"
);
// sbar
Tensor
*
output
=
ctx
.
Output
<
Tensor
>
(
"Y"
);
Tensor
*
bitmask
=
ctx
.
Output
<
Tensor
>
(
"BitMask"
);
// attrs
int
padding
=
ctx
.
Attr
<
int
>
(
"padding"
);
int
stride
=
ctx
.
Attr
<
int
>
(
"stride"
);
int
stride_z
=
ctx
.
Attr
<
int
>
(
"stride_z"
);
int
dilate
=
ctx
.
Attr
<
int
>
(
"dilate"
);
int
group
=
ctx
.
Attr
<
int
>
(
"group"
);
double
eps
=
static_cast
<
double
>
(
ctx
.
Attr
<
float
>
(
"epsilon"
));
double
momentum
=
static_cast
<
double
>
(
ctx
.
Attr
<
float
>
(
"momentum"
));
bool
has_shortcut
=
ctx
.
Attr
<
bool
>
(
"has_shortcut"
);
bool
fuse_add
=
ctx
.
Attr
<
bool
>
(
"fuse_add"
);
bool
use_global_stats
=
ctx
.
Attr
<
bool
>
(
"use_global_stats"
);
bool
is_test
=
ctx
.
Attr
<
bool
>
(
"is_test"
);
bool
is_train
=
!
is_test
&&
!
use_global_stats
;
std
::
string
act_type
=
ctx
.
Attr
<
std
::
string
>
(
"act_type"
);
auto
input_x_shape
=
framework
::
vectorize
<
int
>
(
input_x
->
dims
());
auto
filter_x_shape
=
framework
::
vectorize
<
int
>
(
filter_x
->
dims
());
auto
param_dims
=
scale_x
->
dims
();
auto
param_shape
=
framework
::
vectorize
<
int
>
(
scale_x
->
dims
());
auto
output_shape
=
framework
::
vectorize
<
int
>
(
output
->
dims
());
auto
bitmask_shape
=
framework
::
vectorize
<
int
>
(
bitmask
->
dims
());
int
output_channel
=
filter_x_shape
[
0
];
int64_t
ele_count
=
std
::
accumulate
(
output_shape
.
begin
(),
output_shape
.
end
(),
1
,
std
::
multiplies
<
int
>
())
/
output_channel
;
auto
place
=
ctx
.
GetPlace
();
auto
&
dev_ctx
=
ctx
.
template
device_context
<
platform
::
CUDADeviceContext
>();
// 1. Conv
Tensor
sum_x
;
Tensor
sum_of_squares_x
;
sum_x
.
Resize
(
param_dims
);
sum_of_squares_x
.
Resize
(
param_dims
);
CudnnNormConvolution
<
T
>
conv_x_op
(
dev_ctx
,
input_x_shape
,
filter_x_shape
,
output_shape
,
padding
,
stride
,
dilate
,
group
);
conv_x_op
.
Forward
(
dev_ctx
,
*
input_x
,
*
filter_x
,
conv_out_x
,
&
sum_x
,
&
sum_of_squares_x
);
// 2. BN
Tensor
equiv_scale_x
;
Tensor
equiv_bias_x
;
equiv_scale_x
.
Resize
(
param_dims
);
equiv_bias_x
.
Resize
(
param_dims
);
CudnnBNStatsFinalize
<
T
>
bn_x_op
(
dev_ctx
,
param_shape
);
bn_x_op
.
Forward
(
dev_ctx
,
sum_x
,
sum_of_squares_x
,
*
scale_x
,
*
bias_x
,
saved_mean_x
,
saved_invstd_x
,
running_mean_x
,
running_var_x
,
&
equiv_scale_x
,
&
equiv_bias_x
,
eps
,
momentum
,
ele_count
,
is_train
);
// 3. scale + bias + add + relu
CudnnScaleBiasAddRelu
<
T
>
sbar_op
(
dev_ctx
,
act_type
,
fuse_add
,
has_shortcut
,
output_shape
,
param_shape
,
bitmask_shape
);
if
(
has_shortcut
)
{
// input z
const
Tensor
*
input_z
=
ctx
.
Input
<
Tensor
>
(
"Z"
);
const
Tensor
*
filter_z
=
ctx
.
Input
<
Tensor
>
(
"FilterZ"
);
const
Tensor
*
scale_z
=
ctx
.
Input
<
Tensor
>
(
"ScaleZ"
);
const
Tensor
*
bias_z
=
ctx
.
Input
<
Tensor
>
(
"BiasZ"
);
// norm conv
Tensor
*
conv_out_z
=
ctx
.
Output
<
Tensor
>
(
"ConvZ"
);
// bn finalize
Tensor
*
saved_mean_z
=
ctx
.
Output
<
Tensor
>
(
"SavedMeanZ"
);
Tensor
*
saved_invstd_z
=
ctx
.
Output
<
Tensor
>
(
"SavedInvstdZ"
);
Tensor
*
running_mean_z
=
ctx
.
Output
<
Tensor
>
(
"RunningMeanZ"
);
Tensor
*
running_var_z
=
ctx
.
Output
<
Tensor
>
(
"RunningVarZ"
);
auto
input_z_shape
=
framework
::
vectorize
<
int
>
(
input_z
->
dims
());
auto
filter_z_shape
=
framework
::
vectorize
<
int
>
(
filter_z
->
dims
());
// 3.1 Conv for second input
Tensor
sum_z
;
Tensor
sum_of_squares_z
;
sum_z
.
Resize
(
param_dims
);
sum_of_squares_z
.
Resize
(
param_dims
);
CudnnNormConvolution
<
T
>
conv_z_op
(
dev_ctx
,
input_z_shape
,
filter_z_shape
,
output_shape
,
padding
,
stride_z
,
dilate
,
group
);
conv_z_op
.
Forward
(
dev_ctx
,
*
input_z
,
*
filter_z
,
conv_out_z
,
&
sum_z
,
&
sum_of_squares_z
);
// 3.2 BN for second input
Tensor
equiv_scale_z
;
Tensor
equiv_bias_z
;
equiv_scale_z
.
Resize
(
param_dims
);
equiv_bias_z
.
Resize
(
param_dims
);
CudnnBNStatsFinalize
<
T
>
bn_z_op
(
dev_ctx
,
param_shape
);
bn_z_op
.
Forward
(
dev_ctx
,
sum_z
,
sum_of_squares_z
,
*
scale_z
,
*
bias_z
,
saved_mean_z
,
saved_invstd_z
,
running_mean_z
,
running_var_z
,
&
equiv_scale_z
,
&
equiv_bias_z
,
eps
,
momentum
,
ele_count
,
is_train
);
// 3.3 sbar
sbar_op
.
Forward
(
dev_ctx
,
*
conv_out_x
,
equiv_scale_x
,
equiv_bias_x
,
conv_out_z
,
&
equiv_scale_z
,
&
equiv_bias_z
,
output
,
bitmask
);
}
else
{
const
Tensor
*
input_z
=
fuse_add
?
ctx
.
Input
<
Tensor
>
(
"Z"
)
:
nullptr
;
sbar_op
.
Forward
(
dev_ctx
,
*
conv_out_x
,
equiv_scale_x
,
equiv_bias_x
,
input_z
,
nullptr
,
nullptr
,
output
,
bitmask
);
}
}
};
template
<
typename
T
>
class
ResNetUnitGradKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
PADDLE_ENFORCE_EQ
(
platform
::
is_gpu_place
(
ctx
.
GetPlace
()),
true
,
platform
::
errors
::
PreconditionNotMet
(
"It must use CUDAPlace."
));
PADDLE_ENFORCE_EQ
(
platform
::
CudnnDataType
<
T
>::
type
,
CUDNN_DATA_HALF
,
platform
::
errors
::
Unavailable
(
"ResNetUnitOp only supports float16 for now."
));
const
Tensor
*
y_grad
=
ctx
.
Input
<
Tensor
>
(
framework
::
GradVarName
(
"Y"
));
const
Tensor
*
x
=
ctx
.
Input
<
Tensor
>
(
"X"
);
const
Tensor
*
filter_x
=
ctx
.
Input
<
Tensor
>
(
"FilterX"
);
const
Tensor
*
scale_x
=
ctx
.
Input
<
Tensor
>
(
"ScaleX"
);
const
Tensor
*
bias_x
=
ctx
.
Input
<
Tensor
>
(
"BiasX"
);
const
Tensor
*
saved_mean_x
=
ctx
.
Input
<
Tensor
>
(
"SavedMeanX"
);
const
Tensor
*
saved_invstd_x
=
ctx
.
Input
<
Tensor
>
(
"SavedInvstdX"
);
const
Tensor
*
conv_out_x
=
ctx
.
Input
<
Tensor
>
(
"ConvX"
);
const
Tensor
*
output
=
ctx
.
Input
<
Tensor
>
(
"Y"
);
const
Tensor
*
bitmask
=
ctx
.
Input
<
Tensor
>
(
"BitMask"
);
Tensor
*
x_grad
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"X"
));
Tensor
*
filter_x_grad
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"FilterX"
));
Tensor
*
scale_x_grad
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"ScaleX"
));
Tensor
*
bias_x_grad
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"BiasX"
));
int
padding
=
ctx
.
Attr
<
int
>
(
"padding"
);
int
stride
=
ctx
.
Attr
<
int
>
(
"stride"
);
int
stride_z
=
ctx
.
Attr
<
int
>
(
"stride_z"
);
int
dilate
=
ctx
.
Attr
<
int
>
(
"dilate"
);
int
group
=
ctx
.
Attr
<
int
>
(
"group"
);
double
eps
=
static_cast
<
double
>
(
ctx
.
Attr
<
float
>
(
"epsilon"
));
double
momentum
=
static_cast
<
double
>
(
ctx
.
Attr
<
float
>
(
"momentum"
));
bool
has_shortcut
=
ctx
.
Attr
<
bool
>
(
"has_shortcut"
);
bool
fuse_add
=
ctx
.
Attr
<
bool
>
(
"fuse_add"
);
bool
use_global_stats
=
ctx
.
Attr
<
bool
>
(
"use_global_stats"
);
std
::
string
act_type
=
ctx
.
Attr
<
std
::
string
>
(
"act_type"
);
auto
x_shape
=
framework
::
vectorize
<
int
>
(
x
->
dims
());
auto
filter_x_shape
=
framework
::
vectorize
<
int
>
(
filter_x
->
dims
());
auto
param_shape
=
framework
::
vectorize
<
int
>
(
scale_x
->
dims
());
auto
output_shape
=
framework
::
vectorize
<
int
>
(
output
->
dims
());
auto
bitmask_shape
=
framework
::
vectorize
<
int
>
(
bitmask
->
dims
());
auto
place
=
ctx
.
GetPlace
();
auto
&
dev_ctx
=
ctx
.
template
device_context
<
platform
::
CUDADeviceContext
>();
// 1. Backward of BN (+ Add + Relu) for x, get conv_out_x_grad,
// scale_x_grad, bias_x_grad
Tensor
conv_out_x_grad
;
conv_out_x_grad
.
Resize
(
conv_out_x
->
dims
());
CudnnScaleBiasAddRelu
<
T
>
sbar_x_op
(
dev_ctx
,
act_type
,
fuse_add
,
has_shortcut
,
output_shape
,
param_shape
,
bitmask_shape
);
if
(
has_shortcut
)
{
// X Z
// | |
// NormConv NormConv
// | |
// BNStatsFinalize BNStatsFinalize
// \ /
// ScaleBiasAddRelu
// |
// Y
const
Tensor
*
z
=
ctx
.
Input
<
Tensor
>
(
"Z"
);
const
Tensor
*
filter_z
=
ctx
.
Input
<
Tensor
>
(
"FilterZ"
);
const
Tensor
*
scale_z
=
ctx
.
Input
<
Tensor
>
(
"ScaleZ"
);
const
Tensor
*
bias_z
=
ctx
.
Input
<
Tensor
>
(
"BiasZ"
);
const
Tensor
*
saved_mean_z
=
ctx
.
Input
<
Tensor
>
(
"SavedMeanZ"
);
const
Tensor
*
saved_invstd_z
=
ctx
.
Input
<
Tensor
>
(
"SavedInvstdZ"
);
const
Tensor
*
conv_out_z
=
ctx
.
Input
<
Tensor
>
(
"ConvZ"
);
Tensor
*
z_grad
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"Z"
));
Tensor
*
filter_z_grad
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"FilterZ"
));
Tensor
*
scale_z_grad
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"ScaleZ"
));
Tensor
*
bias_z_grad
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"BiasZ"
));
// 1.1 Backward of BN + Add (+ Relu) for x, get conv_out_x_grad,
// scale_x_grad, bias_x_grad and z_grad_temp
Tensor
z_grad_temp
;
z_grad_temp
.
Resize
(
conv_out_z
->
dims
());
sbar_x_op
.
Backward
(
dev_ctx
,
*
y_grad
,
*
conv_out_x
,
*
scale_x
,
*
bias_x
,
*
saved_mean_x
,
*
saved_invstd_x
,
bitmask
,
&
conv_out_x_grad
,
&
z_grad_temp
,
scale_x_grad
,
bias_x_grad
,
eps
);
// 1.2 bn backward for z, get conv_out_z_grad, dscale_z, dbias_z
Tensor
conv_out_z_grad
;
conv_out_z_grad
.
Resize
(
conv_out_z
->
dims
());
CudnnScaleBiasAddRelu
<
T
>
sbar_z_op
(
dev_ctx
,
""
,
false
,
false
,
output_shape
,
param_shape
,
bitmask_shape
);
sbar_z_op
.
Backward
(
dev_ctx
,
z_grad_temp
,
*
conv_out_z
,
*
scale_z
,
*
bias_z
,
*
saved_mean_z
,
*
saved_invstd_z
,
nullptr
,
&
conv_out_z_grad
,
nullptr
,
scale_z_grad
,
bias_z_grad
,
eps
);
// 1.3 Backward of Conv for z, get z_grad and filter_z_grad
auto
z_shape
=
framework
::
vectorize
<
int
>
(
z
->
dims
());
auto
filter_z_shape
=
framework
::
vectorize
<
int
>
(
filter_z
->
dims
());
CudnnNormConvolutionGrad
<
T
>
conv_z_op
(
dev_ctx
,
z_shape
,
filter_z_shape
,
output_shape
,
padding
,
stride_z
,
dilate
,
group
);
conv_z_op
.
Backward
(
dev_ctx
,
*
z
,
*
filter_z
,
conv_out_z_grad
,
z_grad
,
filter_z_grad
);
}
else
{
// 1.1 Backward of BN (+ Add + Relu) for x, get conv_out_x_grad,
// scale_x_grad, bias_x_grad (and z_grad)
Tensor
*
z_grad
=
fuse_add
?
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"Z"
))
:
nullptr
;
sbar_x_op
.
Backward
(
dev_ctx
,
*
y_grad
,
*
conv_out_x
,
*
scale_x
,
*
bias_x
,
*
saved_mean_x
,
*
saved_invstd_x
,
bitmask
,
&
conv_out_x_grad
,
z_grad
,
scale_x_grad
,
bias_x_grad
,
eps
);
}
// 2. Backward of Conv for x, get x_grad and filter_x_grad
CudnnNormConvolutionGrad
<
T
>
conv_x_op
(
dev_ctx
,
x_shape
,
filter_x_shape
,
output_shape
,
padding
,
stride
,
dilate
,
group
);
conv_x_op
.
Backward
(
dev_ctx
,
*
x
,
*
filter_x
,
conv_out_x_grad
,
x_grad
,
filter_x_grad
);
}
};
}
// namespace operators
}
// namespace paddle
#if CUDNN_VERSION >= 8000
namespace
ops
=
paddle
::
operators
;
namespace
plat
=
paddle
::
platform
;
REGISTER_OP_CUDA_KERNEL
(
resnet_unit
,
ops
::
ResNetUnitKernel
<
plat
::
float16
>
);
REGISTER_OP_CUDA_KERNEL
(
resnet_unit_grad
,
ops
::
ResNetUnitGradKernel
<
plat
::
float16
>
);
#endif
python/paddle/fluid/contrib/mixed_precision/fp16_utils.py
浏览文件 @
12e6dbbc
...
...
@@ -80,6 +80,27 @@ def _dtype_to_str(dtype):
return
'fp32'
def
_keep_fp32_input
(
op
,
in_name
):
op_type
=
op
.
type
if
op_type
in
[
'batch_norm'
,
'layer_norm'
]:
# Scale, Bias, Mean, Variance should be float32.
return
in_name
!=
'X'
if
op_type
==
'fused_bn_add_activation'
:
return
in_name
not
in
{
'X'
,
'Z'
}
if
op_type
==
'resnet_unit'
:
return
in_name
not
in
{
'X'
,
'FilterX'
,
'Z'
,
'FilterZ'
}
return
False
def
_keep_fp32_output
(
op
,
out_name
):
op_type
=
op
.
type
if
op_type
in
[
'batch_norm'
,
'fused_bn_add_activation'
,
'layer_norm'
]:
return
out_name
!=
'Y'
if
op_type
==
'resnet_unit'
:
return
out_name
not
in
{
'Y'
,
'ConvX'
,
'ConvZ'
}
return
False
def
_insert_cast_op
(
block
,
op
,
idx
,
src_dtype
,
dest_dtype
):
"""
Insert cast op and rename args of input and output.
...
...
@@ -97,11 +118,9 @@ def _insert_cast_op(block, op, idx, src_dtype, dest_dtype):
num_cast_ops
=
0
for
in_name
in
op
.
input_names
:
if
src_dtype
==
core
.
VarDesc
.
VarType
.
FP32
and
op
.
type
in
[
'batch_norm'
,
'fused_bn_add_activation'
,
'layer_norm'
]:
if
in_name
not
in
{
'X'
,
'Z'
}:
continue
if
src_dtype
==
core
.
VarDesc
.
VarType
.
FP32
and
_keep_fp32_input
(
op
,
in_name
):
continue
for
in_var_name
in
op
.
input
(
in_name
):
in_var
=
block
.
_find_var_recursive
(
in_var_name
)
if
in_var
.
type
not
in
_valid_types
or
in_var
.
dtype
==
dest_dtype
:
...
...
@@ -154,9 +173,7 @@ def _insert_cast_op(block, op, idx, src_dtype, dest_dtype):
op
.
_set_attr
(
'in_dtype'
,
dest_dtype
)
if
src_dtype
==
core
.
VarDesc
.
VarType
.
FP32
and
dest_dtype
==
core
.
VarDesc
.
VarType
.
FP16
:
for
out_name
in
op
.
output_names
:
if
op
.
type
in
[
'batch_norm'
,
'fused_bn_add_activation'
,
'layer_norm'
]
and
out_name
!=
'Y'
:
if
_keep_fp32_output
(
op
,
out_name
):
continue
for
out_var_name
in
op
.
output
(
out_name
):
out_var
=
block
.
var
(
out_var_name
)
...
...
@@ -371,9 +388,7 @@ def cast_model_to_fp16(program, amp_lists=None, use_fp16_guard=True):
keep_fp32_ops
.
add
(
op
)
continue
# processed below
for
in_name
in
op
.
input_names
:
if
op
.
type
in
{
'batch_norm'
,
'fused_bn_add_activation'
,
'layer_norm'
}
and
in_name
not
in
{
'X'
,
'Z'
}:
if
_keep_fp32_input
(
op
,
in_name
):
continue
for
in_var_name
in
op
.
input
(
in_name
):
in_var
=
None
...
...
@@ -401,9 +416,7 @@ def cast_model_to_fp16(program, amp_lists=None, use_fp16_guard=True):
format
(
op
.
type
,
in_var_name
,
in_var
.
dtype
))
for
out_name
in
op
.
output_names
:
if
op
.
type
in
{
'batch_norm'
,
'fused_bn_add_activation'
,
'layer_norm'
}
and
out_name
!=
'Y'
:
if
_keep_fp32_output
(
op
,
out_name
):
continue
for
out_var_name
in
op
.
output
(
out_name
):
out_var
=
None
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录