Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
Paddle
提交
bed4fb27
P
Paddle
项目概览
BaiXuePrincess
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
bed4fb27
编写于
10月 14, 2021
作者:
Z
zhulei
提交者:
GitHub
10月 14, 2021
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
[NPU] Add density_prior_box (#36361)
* [NPU] Add density_prior_box op * [NPU] Add density_prior_box op
上级
5d18967b
变更
3
隐藏空白更改
内联
并排
Showing
3 changed file
with
577 addition
and
1 deletion
+577
-1
paddle/fluid/operators/detection/CMakeLists.txt
paddle/fluid/operators/detection/CMakeLists.txt
+2
-1
paddle/fluid/operators/detection/density_prior_box_op_npu.cc
paddle/fluid/operators/detection/density_prior_box_op_npu.cc
+379
-0
python/paddle/fluid/tests/unittests/npu/test_density_prior_box_op_npu.py
...luid/tests/unittests/npu/test_density_prior_box_op_npu.py
+196
-0
未找到文件。
paddle/fluid/operators/detection/CMakeLists.txt
浏览文件 @
bed4fb27
...
...
@@ -17,14 +17,15 @@ endfunction()
if
(
WITH_ASCEND_CL
)
detection_library
(
box_coder_op SRCS box_coder_op.cc box_coder_op.cu box_coder_op_npu.cc
)
detection_library
(
density_prior_box_op SRCS density_prior_box_op.cc density_prior_box_op.cu density_prior_box_op_npu.cc
)
else
()
detection_library
(
box_coder_op SRCS box_coder_op.cc box_coder_op.cu
)
detection_library
(
density_prior_box_op SRCS density_prior_box_op.cc density_prior_box_op.cu
)
endif
()
detection_library
(
bipartite_match_op SRCS bipartite_match_op.cc
)
detection_library
(
mine_hard_examples_op SRCS mine_hard_examples_op.cc
)
detection_library
(
prior_box_op SRCS prior_box_op.cc prior_box_op.cu
)
detection_library
(
density_prior_box_op SRCS density_prior_box_op.cc density_prior_box_op.cu
)
detection_library
(
anchor_generator_op SRCS anchor_generator_op.cc
anchor_generator_op.cu
)
detection_library
(
target_assign_op SRCS target_assign_op.cc
...
...
paddle/fluid/operators/detection/density_prior_box_op_npu.cc
0 → 100644
浏览文件 @
bed4fb27
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/detection/density_prior_box_op.h"
#include "paddle/fluid/operators/npu_op_runner.h"
namespace
paddle
{
namespace
operators
{
using
Tensor
=
framework
::
Tensor
;
using
fp16
=
paddle
::
platform
::
float16
;
template
<
typename
T
>
struct
DensityPriorBoxFunction
{
public:
explicit
DensityPriorBoxFunction
(
const
framework
::
ExecutionContext
&
ctx
)
:
ctx
(
ctx
)
{
place
=
ctx
.
GetPlace
();
stream
=
ctx
.
template
device_context
<
platform
::
NPUDeviceContext
>().
stream
();
t0
.
mutable_data
<
float
>
({
1
},
place
);
t1
.
mutable_data
<
float
>
({
1
},
place
);
tn
.
mutable_data
<
float
>
({
1
},
place
);
FillNpuTensorWithConstant
<
float
>
(
&
t0
,
static_cast
<
float
>
(
0
));
FillNpuTensorWithConstant
<
float
>
(
&
t1
,
static_cast
<
float
>
(
1
));
}
void
Arange
(
int
n
,
Tensor
*
x
)
{
// x should be init first
FillNpuTensorWithConstant
<
float
>
(
&
tn
,
static_cast
<
float
>
(
n
));
const
auto
&
runner
=
NpuOpRunner
(
"Range"
,
{
t0
,
tn
,
t1
},
{
*
x
},
{});
runner
.
Run
(
stream
);
}
void
Add
(
const
Tensor
*
x
,
const
Tensor
*
y
,
Tensor
*
z
)
{
// z should be init first
const
auto
&
runner
=
NpuOpRunner
(
"AddV2"
,
{
*
x
,
*
y
},
{
*
z
},
{});
runner
.
Run
(
stream
);
}
void
Cast
(
const
Tensor
*
x
,
Tensor
*
y
)
{
auto
dst_dtype
=
ConvertToNpuDtype
(
y
->
type
());
const
auto
&
runner
=
NpuOpRunner
(
"Cast"
,
{
*
x
},
{
*
y
},
{{
"dst_type"
,
static_cast
<
int
>
(
dst_dtype
)}});
runner
.
Run
(
stream
);
}
void
Sub
(
const
Tensor
*
x
,
const
Tensor
*
y
,
Tensor
*
z
)
{
// z should be init first
const
auto
&
runner
=
NpuOpRunner
(
"Sub"
,
{
*
x
,
*
y
},
{
*
z
},
{});
runner
.
Run
(
stream
);
}
void
Mul
(
const
Tensor
*
x
,
const
Tensor
*
y
,
Tensor
*
z
)
{
// y should be init first
const
auto
&
runner
=
NpuOpRunner
(
"Mul"
,
{
*
x
,
*
y
},
{
*
z
},
{});
runner
.
Run
(
stream
);
}
void
Adds
(
const
Tensor
*
x
,
float
scalar
,
Tensor
*
y
)
{
// y should be init first
const
auto
&
runner
=
NpuOpRunner
(
"Adds"
,
{
*
x
},
{
*
y
},
{{
"value"
,
scalar
}});
runner
.
Run
(
stream
);
}
void
Muls
(
const
Tensor
*
x
,
float
scalar
,
Tensor
*
y
)
{
// y should be init first
const
auto
&
runner
=
NpuOpRunner
(
"Muls"
,
{
*
x
},
{
*
y
},
{{
"value"
,
scalar
}});
runner
.
Run
(
stream
);
}
void
Maximum
(
const
Tensor
*
x
,
const
Tensor
*
y
,
Tensor
*
z
)
{
// y should be init first
const
auto
&
runner
=
NpuOpRunner
(
"Maximum"
,
{
*
x
,
*
y
},
{
*
z
},
{});
runner
.
Run
(
stream
);
}
void
Minimum
(
const
Tensor
*
x
,
const
Tensor
*
y
,
Tensor
*
z
)
{
// y should be init first
const
auto
&
runner
=
NpuOpRunner
(
"Minimum"
,
{
*
x
,
*
y
},
{
*
z
},
{});
runner
.
Run
(
stream
);
}
void
Concat
(
const
std
::
vector
<
Tensor
>&
inputs
,
int
axis
,
Tensor
*
output
)
{
// output should be init first
std
::
vector
<
std
::
string
>
names
;
for
(
size_t
i
=
0
;
i
<
inputs
.
size
();
i
++
)
{
names
.
push_back
(
"x"
+
std
::
to_string
(
i
));
}
NpuOpRunner
runner
{
"ConcatD"
,
{
inputs
},
{
*
output
},
{{
"concat_dim"
,
axis
},
{
"N"
,
static_cast
<
int
>
(
inputs
.
size
())}}};
runner
.
AddInputNames
(
names
);
runner
.
Run
(
stream
);
}
void
Tile
(
const
Tensor
*
x
,
Tensor
*
y
,
const
std
::
vector
<
int
>&
multiples
)
{
// y should be init first
if
(
x
->
dims
()
==
y
->
dims
())
{
framework
::
TensorCopy
(
*
x
,
place
,
ctx
.
template
device_context
<
platform
::
NPUDeviceContext
>(),
y
);
return
;
}
const
auto
&
runner
=
NpuOpRunner
(
"TileD"
,
{
*
x
},
{
*
y
},
{{
"multiples"
,
multiples
}});
runner
.
Run
(
stream
);
}
void
FloatVec2Tsr
(
const
std
::
vector
<
float
>&
vec
,
Tensor
*
tsr_dst
)
{
//
framework
::
TensorFromVector
<
T
>
(
vec
,
ctx
.
device_context
(),
tsr_dst
);
ctx
.
template
device_context
<
platform
::
NPUDeviceContext
>().
Wait
();
}
private:
platform
::
Place
place
;
aclrtStream
stream
;
const
framework
::
ExecutionContext
&
ctx
;
Tensor
t0
;
Tensor
t1
;
Tensor
tn
;
};
template
<
>
void
DensityPriorBoxFunction
<
fp16
>::
Arange
(
int
n
,
Tensor
*
x
)
{
Tensor
x_fp32
(
framework
::
proto
::
VarType
::
FP32
);
x_fp32
.
mutable_data
<
float
>
(
x
->
dims
(),
place
);
FillNpuTensorWithConstant
<
float
>
(
&
tn
,
static_cast
<
float
>
(
n
));
const
auto
&
runner
=
NpuOpRunner
(
"Range"
,
{
t0
,
tn
,
t1
},
{
x_fp32
},
{});
runner
.
Run
(
stream
);
Cast
(
&
x_fp32
,
x
);
}
template
<
>
void
DensityPriorBoxFunction
<
fp16
>::
FloatVec2Tsr
(
const
std
::
vector
<
float
>&
vec
,
Tensor
*
tsr_dst
)
{
Tensor
tsr_fp32
(
framework
::
proto
::
VarType
::
FP32
);
tsr_fp32
.
mutable_data
<
float
>
(
tsr_dst
->
dims
(),
place
);
framework
::
TensorFromVector
<
float
>
(
vec
,
ctx
.
device_context
(),
&
tsr_fp32
);
ctx
.
template
device_context
<
paddle
::
platform
::
NPUDeviceContext
>().
Wait
();
Cast
(
&
tsr_fp32
,
tsr_dst
);
}
template
<
typename
T
>
class
DensityPriorBoxOpNPUKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
*
input
=
ctx
.
Input
<
paddle
::
framework
::
Tensor
>
(
"Input"
);
auto
*
image
=
ctx
.
Input
<
paddle
::
framework
::
Tensor
>
(
"Image"
);
auto
*
boxes
=
ctx
.
Output
<
paddle
::
framework
::
Tensor
>
(
"Boxes"
);
auto
*
vars
=
ctx
.
Output
<
paddle
::
framework
::
Tensor
>
(
"Variances"
);
auto
variances
=
ctx
.
Attr
<
std
::
vector
<
float
>>
(
"variances"
);
auto
clip
=
ctx
.
Attr
<
bool
>
(
"clip"
);
auto
fixed_sizes
=
ctx
.
Attr
<
std
::
vector
<
float
>>
(
"fixed_sizes"
);
auto
fixed_ratios
=
ctx
.
Attr
<
std
::
vector
<
float
>>
(
"fixed_ratios"
);
auto
densities
=
ctx
.
Attr
<
std
::
vector
<
int
>>
(
"densities"
);
float
step_w
=
ctx
.
Attr
<
float
>
(
"step_w"
);
float
step_h
=
ctx
.
Attr
<
float
>
(
"step_h"
);
float
offset
=
ctx
.
Attr
<
float
>
(
"offset"
);
int
image_w
=
image
->
dims
()[
3
];
int
image_h
=
image
->
dims
()[
2
];
int
layer_w
=
input
->
dims
()[
3
];
int
layer_h
=
input
->
dims
()[
2
];
auto
_type
=
input
->
type
();
auto
place
=
ctx
.
GetPlace
();
DensityPriorBoxFunction
<
T
>
F
(
ctx
);
Tensor
h
(
_type
);
h
.
mutable_data
<
T
>
({
layer_h
},
place
);
Tensor
w
(
_type
);
w
.
mutable_data
<
T
>
({
layer_w
},
place
);
F
.
Arange
(
layer_h
,
&
h
);
F
.
Arange
(
layer_w
,
&
w
);
h
.
Resize
({
layer_h
,
1
,
1
,
1
});
w
.
Resize
({
1
,
layer_w
,
1
,
1
});
step_w
=
step_w
>
0
?
step_w
:
static_cast
<
float
>
(
image_w
)
/
layer_w
;
step_h
=
step_h
>
0
?
step_h
:
static_cast
<
float
>
(
image_h
)
/
layer_h
;
int
step_average
=
static_cast
<
int
>
((
step_w
+
step_h
)
*
0.5
);
int
ratios_size
=
fixed_ratios
.
size
();
int
num_priors_per_ratio
=
0
;
for
(
size_t
i
=
0
;
i
<
densities
.
size
();
++
i
)
{
num_priors_per_ratio
+=
densities
[
i
]
*
densities
[
i
];
}
Tensor
di
(
_type
);
Tensor
dj
(
_type
);
Tensor
shifts
(
_type
);
Tensor
box_w_ratio
(
_type
);
Tensor
box_h_ratio
(
_type
);
di
.
mutable_data
<
T
>
({
ratios_size
*
num_priors_per_ratio
},
place
);
dj
.
mutable_data
<
T
>
({
ratios_size
*
num_priors_per_ratio
},
place
);
shifts
.
mutable_data
<
T
>
({
ratios_size
*
num_priors_per_ratio
},
place
);
box_w_ratio
.
mutable_data
<
T
>
({
ratios_size
*
num_priors_per_ratio
},
place
);
box_h_ratio
.
mutable_data
<
T
>
({
ratios_size
*
num_priors_per_ratio
},
place
);
int64_t
start
=
0
;
std
::
vector
<
int
>
vec_tile
=
{
0
,
0
,
0
};
for
(
size_t
i
=
0
;
i
<
densities
.
size
();
++
i
)
{
// Range = start:start+ratios_size*density_sqr, density = densities[i]
int
density_sqr
=
densities
[
i
]
*
densities
[
i
];
// shifts[Range] = [step_average/density]*ratios_size*density_sqr
Tensor
shifts_part
=
shifts
.
Slice
(
start
,
start
+
ratios_size
*
density_sqr
);
FillNpuTensorWithConstant
<
T
>
(
&
shifts_part
,
static_cast
<
T
>
(
step_average
/
densities
[
i
]));
// di[Range] = [ i // density for i in range(density_sqr) ] * ratios_size
// dj[Range] = [ i % density for i in range(density_sqr) ] * ratios_size
Tensor
di_part
=
di
.
Slice
(
start
,
start
+
ratios_size
*
density_sqr
);
Tensor
dj_part
=
dj
.
Slice
(
start
,
start
+
ratios_size
*
density_sqr
);
if
(
densities
[
i
]
>
1
)
{
di_part
.
Resize
({
ratios_size
,
densities
[
i
],
densities
[
i
]});
dj_part
.
Resize
({
ratios_size
,
densities
[
i
],
densities
[
i
]});
Tensor
range_n
(
_type
);
range_n
.
mutable_data
<
T
>
({
densities
[
i
]},
place
);
F
.
Arange
(
densities
[
i
],
&
range_n
);
range_n
.
Resize
({
1
,
densities
[
i
],
1
});
vec_tile
[
0
]
=
ratios_size
;
vec_tile
[
1
]
=
1
;
vec_tile
[
2
]
=
densities
[
i
];
F
.
Tile
(
&
range_n
,
&
di_part
,
vec_tile
);
range_n
.
Resize
({
1
,
1
,
densities
[
i
]});
vec_tile
[
1
]
=
densities
[
i
];
vec_tile
[
2
]
=
1
;
F
.
Tile
(
&
range_n
,
&
dj_part
,
vec_tile
);
}
else
{
FillNpuTensorWithConstant
<
T
>
(
&
di_part
,
static_cast
<
T
>
(
0
));
FillNpuTensorWithConstant
<
T
>
(
&
dj_part
,
static_cast
<
T
>
(
0
));
}
int
start_box_ratio
=
start
;
for
(
float
ar
:
fixed_ratios
)
{
// Range_mini = start_box_ratio:start_box_ratio+density_sqr
// box_h_ratio[Range_mini] = [fixed_sizes[i] * sqrt(ar)] * density_sqr
// box_w_ratio[Range_mini] = [fixed_sizes[i] / sqrt(ar)] * density_sqr
Tensor
box_h_ratio_part
=
box_h_ratio
.
Slice
(
start_box_ratio
,
start_box_ratio
+
density_sqr
);
Tensor
box_w_ratio_part
=
box_w_ratio
.
Slice
(
start_box_ratio
,
start_box_ratio
+
density_sqr
);
FillNpuTensorWithConstant
<
T
>
(
&
box_w_ratio_part
,
static_cast
<
T
>
(
fixed_sizes
[
i
]
*
sqrt
(
ar
)));
FillNpuTensorWithConstant
<
T
>
(
&
box_h_ratio_part
,
static_cast
<
T
>
(
fixed_sizes
[
i
]
/
sqrt
(
ar
)));
start_box_ratio
+=
density_sqr
;
}
start
=
start_box_ratio
;
}
di
.
Resize
({
1
,
1
,
ratios_size
*
num_priors_per_ratio
,
1
});
dj
.
Resize
({
1
,
1
,
ratios_size
*
num_priors_per_ratio
,
1
});
shifts
.
Resize
({
1
,
1
,
ratios_size
*
num_priors_per_ratio
,
1
});
box_w_ratio
.
Resize
({
1
,
1
,
ratios_size
*
num_priors_per_ratio
,
1
});
box_h_ratio
.
Resize
({
1
,
1
,
ratios_size
*
num_priors_per_ratio
,
1
});
// c_x = (w+offset)*step_w - 0.5*step_average + 0.5*shifts + dj*shifts
// c_y = (h+offset)*step_h - 0.5*step_average + 0.5*shifts + di*shifts
Tensor
c_x
(
_type
);
Tensor
c_y
(
_type
);
auto
dim0
=
framework
::
make_ddim
(
{
1
,
layer_w
,
ratios_size
*
num_priors_per_ratio
,
1
});
auto
dim1
=
framework
::
make_ddim
(
{
layer_h
,
1
,
ratios_size
*
num_priors_per_ratio
,
1
});
c_x
.
mutable_data
<
T
>
(
dim0
,
place
);
c_y
.
mutable_data
<
T
>
(
dim1
,
place
);
F
.
Adds
(
&
w
,
offset
,
&
w
);
F
.
Muls
(
&
w
,
step_w
,
&
w
);
F
.
Adds
(
&
w
,
static_cast
<
float
>
(
-
step_average
)
*
static_cast
<
float
>
(
0.5
),
&
w
);
F
.
Adds
(
&
h
,
offset
,
&
h
);
F
.
Muls
(
&
h
,
step_h
,
&
h
);
F
.
Adds
(
&
h
,
static_cast
<
float
>
(
-
step_average
)
*
static_cast
<
float
>
(
0.5
),
&
h
);
F
.
Mul
(
&
di
,
&
shifts
,
&
di
);
F
.
Mul
(
&
dj
,
&
shifts
,
&
dj
);
F
.
Muls
(
&
shifts
,
static_cast
<
float
>
(
0.5
),
&
shifts
);
F
.
Add
(
&
di
,
&
shifts
,
&
di
);
F
.
Add
(
&
dj
,
&
shifts
,
&
dj
);
F
.
Add
(
&
dj
,
&
w
,
&
c_x
);
F
.
Add
(
&
di
,
&
h
,
&
c_y
);
// box_w_ratio = box_w_ratio / 2
// box_h_ratio = box_h_ratio / 2
F
.
Muls
(
&
box_w_ratio
,
static_cast
<
float
>
(
0.5
),
&
box_w_ratio
);
F
.
Muls
(
&
box_h_ratio
,
static_cast
<
float
>
(
0.5
),
&
box_h_ratio
);
Tensor
zero_t
(
_type
);
Tensor
one_t
(
_type
);
zero_t
.
mutable_data
<
T
>
({
1
},
place
);
one_t
.
mutable_data
<
T
>
({
1
},
place
);
FillNpuTensorWithConstant
<
T
>
(
&
zero_t
,
static_cast
<
T
>
(
0
));
FillNpuTensorWithConstant
<
T
>
(
&
one_t
,
static_cast
<
T
>
(
1
));
Tensor
outbox0
(
_type
);
Tensor
outbox1
(
_type
);
Tensor
outbox2
(
_type
);
Tensor
outbox3
(
_type
);
outbox0
.
mutable_data
<
T
>
(
dim0
,
place
);
outbox1
.
mutable_data
<
T
>
(
dim1
,
place
);
outbox2
.
mutable_data
<
T
>
(
dim0
,
place
);
outbox3
.
mutable_data
<
T
>
(
dim1
,
place
);
// outbox0 = max ( (c_x - box_w_ratio)/image_w, 0 )
// outbox1 = max ( (c_y - box_h_ratio)/image_h, 0 )
// outbox2 = min ( (c_x + box_w_ratio)/image_w, 1 )
// outbox3 = min ( (c_y + box_h_ratio)/image_h, 1 )
F
.
Sub
(
&
c_x
,
&
box_w_ratio
,
&
outbox0
);
F
.
Sub
(
&
c_y
,
&
box_h_ratio
,
&
outbox1
);
F
.
Add
(
&
c_x
,
&
box_w_ratio
,
&
outbox2
);
F
.
Add
(
&
c_y
,
&
box_h_ratio
,
&
outbox3
);
F
.
Muls
(
&
outbox0
,
static_cast
<
float
>
(
1.0
/
image_w
),
&
outbox0
);
F
.
Muls
(
&
outbox1
,
static_cast
<
float
>
(
1.0
/
image_h
),
&
outbox1
);
F
.
Muls
(
&
outbox2
,
static_cast
<
float
>
(
1.0
/
image_w
),
&
outbox2
);
F
.
Muls
(
&
outbox3
,
static_cast
<
float
>
(
1.0
/
image_h
),
&
outbox3
);
F
.
Maximum
(
&
outbox0
,
&
zero_t
,
&
outbox0
);
F
.
Maximum
(
&
outbox1
,
&
zero_t
,
&
outbox1
);
F
.
Minimum
(
&
outbox2
,
&
one_t
,
&
outbox2
);
F
.
Minimum
(
&
outbox3
,
&
one_t
,
&
outbox3
);
if
(
clip
)
{
// outbox0 = min ( outbox0, 1 )
// outbox1 = min ( outbox1, 1 )
// outbox2 = max ( outbox2, 0 )
// outbox3 = max ( outbox3, 0 )
F
.
Minimum
(
&
outbox0
,
&
one_t
,
&
outbox0
);
F
.
Minimum
(
&
outbox1
,
&
one_t
,
&
outbox1
);
F
.
Maximum
(
&
outbox2
,
&
zero_t
,
&
outbox2
);
F
.
Maximum
(
&
outbox3
,
&
zero_t
,
&
outbox3
);
}
auto
out_dim
=
framework
::
make_ddim
(
{
layer_h
,
layer_w
,
ratios_size
*
num_priors_per_ratio
,
4
});
boxes
->
mutable_data
<
T
>
(
place
);
vars
->
mutable_data
<
T
>
(
place
);
Tensor
boxes_share
(
_type
);
Tensor
vars_share
(
_type
);
boxes_share
.
ShareDataWith
(
*
boxes
);
boxes_share
.
Resize
(
out_dim
);
vars_share
.
ShareDataWith
(
*
vars
);
vars_share
.
Resize
(
out_dim
);
Tensor
box0
(
_type
);
Tensor
box1
(
_type
);
Tensor
box2
(
_type
);
Tensor
box3
(
_type
);
// out_dim = {layer_h, layer_w, ratios_size*num_priors_per_ratio, 1}
out_dim
[
3
]
=
1
;
box0
.
mutable_data
<
T
>
(
out_dim
,
place
);
box1
.
mutable_data
<
T
>
(
out_dim
,
place
);
box2
.
mutable_data
<
T
>
(
out_dim
,
place
);
box3
.
mutable_data
<
T
>
(
out_dim
,
place
);
std
::
vector
<
int
>
vec_exp_out02
=
{
layer_h
,
1
,
1
,
1
};
std
::
vector
<
int
>
vec_exp_out13
=
{
1
,
layer_w
,
1
,
1
};
F
.
Tile
(
&
outbox0
,
&
box0
,
vec_exp_out02
);
F
.
Tile
(
&
outbox1
,
&
box1
,
vec_exp_out13
);
F
.
Tile
(
&
outbox2
,
&
box2
,
vec_exp_out02
);
F
.
Tile
(
&
outbox3
,
&
box3
,
vec_exp_out13
);
F
.
Concat
({
box0
,
box1
,
box2
,
box3
},
3
,
&
boxes_share
);
std
::
vector
<
int
>
multiples
=
{
layer_h
,
layer_w
,
ratios_size
*
num_priors_per_ratio
,
1
};
Tensor
variances_t
(
_type
);
// variances.size() == 4
variances_t
.
mutable_data
<
T
>
({
4
},
place
);
F
.
FloatVec2Tsr
(
variances
,
&
variances_t
);
F
.
Tile
(
&
variances_t
,
&
vars_share
,
multiples
);
}
};
}
// namespace operators
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
namespace
plat
=
paddle
::
platform
;
REGISTER_OP_NPU_KERNEL
(
density_prior_box
,
ops
::
DensityPriorBoxOpNPUKernel
<
plat
::
float16
>
,
ops
::
DensityPriorBoxOpNPUKernel
<
float
>
);
python/paddle/fluid/tests/unittests/npu/test_density_prior_box_op_npu.py
0 → 100644
浏览文件 @
bed4fb27
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
print_function
import
unittest
import
numpy
as
np
import
sys
sys
.
path
.
append
(
".."
)
import
math
import
paddle
from
op_test
import
OpTest
paddle
.
enable_static
()
np
.
random
.
seed
(
2021
)
class
TestNpuDensityPriorBoxOp
(
OpTest
):
def
set_data
(
self
):
self
.
init_test_params
()
self
.
init_test_input
()
self
.
init_test_output
()
#self.init_test_output2()
self
.
inputs
=
{
'Input'
:
self
.
input
,
'Image'
:
self
.
image
}
self
.
attrs
=
{
'variances'
:
self
.
variances
,
'clip'
:
self
.
clip
,
'step_w'
:
self
.
step_w
,
'step_h'
:
self
.
step_h
,
'offset'
:
self
.
offset
,
'densities'
:
self
.
densities
,
'fixed_sizes'
:
self
.
fixed_sizes
,
'fixed_ratios'
:
self
.
fixed_ratios
,
'flatten_to_2d'
:
self
.
flatten_to_2d
}
self
.
outputs
=
{
'Boxes'
:
self
.
out_boxes
,
'Variances'
:
self
.
out_var
}
def
test_check_output
(
self
):
self
.
check_output_with_place
(
self
.
place
,
atol
=
self
.
atol
)
def
setUp
(
self
):
self
.
__class__
.
use_npu
=
True
self
.
op_type
=
'density_prior_box'
self
.
place
=
paddle
.
NPUPlace
(
0
)
self
.
init_dtype
()
self
.
set_data
()
def
init_dtype
(
self
):
self
.
dtype
=
np
.
float32
def
set_density
(
self
):
self
.
densities
=
[
4
,
2
,
1
]
self
.
fixed_sizes
=
[
32.0
,
64.0
,
128.0
]
self
.
fixed_ratios
=
[
1.0
]
self
.
layer_w
=
17
self
.
layer_h
=
17
self
.
image_w
=
533
self
.
image_h
=
533
self
.
flatten_to_2d
=
False
def
init_test_params
(
self
):
self
.
set_density
()
self
.
step_w
=
float
(
self
.
image_w
)
/
float
(
self
.
layer_w
)
self
.
step_h
=
float
(
self
.
image_h
)
/
float
(
self
.
layer_h
)
self
.
input_channels
=
2
self
.
image_channels
=
3
self
.
batch_size
=
10
self
.
variances
=
[
0.1
,
0.1
,
0.2
,
0.2
]
self
.
variances
=
np
.
array
(
self
.
variances
,
dtype
=
np
.
float
).
flatten
()
self
.
clip
=
True
self
.
num_priors
=
0
if
len
(
self
.
fixed_sizes
)
>
0
and
len
(
self
.
densities
)
>
0
:
for
density
in
self
.
densities
:
if
len
(
self
.
fixed_ratios
)
>
0
:
self
.
num_priors
+=
len
(
self
.
fixed_ratios
)
*
(
pow
(
density
,
2
))
self
.
offset
=
0.5
self
.
atol
=
1e-5
def
init_test_input
(
self
):
self
.
image
=
np
.
random
.
random
(
(
self
.
batch_size
,
self
.
image_channels
,
self
.
image_h
,
self
.
image_w
)).
astype
(
self
.
dtype
)
self
.
input
=
np
.
random
.
random
(
(
self
.
batch_size
,
self
.
input_channels
,
self
.
layer_h
,
self
.
layer_w
)).
astype
(
self
.
dtype
)
def
init_test_output
(
self
):
out_dim
=
(
self
.
layer_h
,
self
.
layer_w
,
self
.
num_priors
,
4
)
out_boxes
=
np
.
zeros
(
out_dim
).
astype
(
self
.
dtype
)
out_var
=
np
.
zeros
(
out_dim
).
astype
(
self
.
dtype
)
step_average
=
int
((
self
.
step_w
+
self
.
step_h
)
*
0.5
)
for
h
in
range
(
self
.
layer_h
):
for
w
in
range
(
self
.
layer_w
):
idx
=
0
c_x
=
(
w
+
self
.
offset
)
*
self
.
step_w
c_y
=
(
h
+
self
.
offset
)
*
self
.
step_h
# Generate density prior boxes with fixed size
for
density
,
fixed_size
in
zip
(
self
.
densities
,
self
.
fixed_sizes
):
if
(
len
(
self
.
fixed_ratios
)
>
0
):
for
ar
in
self
.
fixed_ratios
:
shift
=
int
(
step_average
/
density
)
box_width_ratio
=
fixed_size
*
math
.
sqrt
(
ar
)
box_height_ratio
=
fixed_size
/
math
.
sqrt
(
ar
)
for
di
in
range
(
density
):
for
dj
in
range
(
density
):
c_x_temp
=
c_x
-
step_average
/
2.0
+
shift
/
2.0
+
dj
*
shift
c_y_temp
=
c_y
-
step_average
/
2.0
+
shift
/
2.0
+
di
*
shift
out_boxes
[
h
,
w
,
idx
,
:]
=
[
max
((
c_x_temp
-
box_width_ratio
/
2.0
)
/
self
.
image_w
,
0
),
max
((
c_y_temp
-
box_height_ratio
/
2.0
)
/
self
.
image_h
,
0
),
min
((
c_x_temp
+
box_width_ratio
/
2.0
)
/
self
.
image_w
,
1
),
min
((
c_y_temp
+
box_height_ratio
/
2.0
)
/
self
.
image_h
,
1
)
]
idx
+=
1
if
self
.
clip
:
out_boxes
=
np
.
clip
(
out_boxes
,
0.0
,
1.0
)
out_var
=
np
.
tile
(
self
.
variances
,
(
self
.
layer_h
,
self
.
layer_w
,
self
.
num_priors
,
1
))
self
.
out_boxes
=
out_boxes
.
astype
(
self
.
dtype
)
self
.
out_var
=
out_var
.
astype
(
self
.
dtype
)
if
self
.
flatten_to_2d
:
self
.
out_boxes
=
self
.
out_boxes
.
reshape
((
-
1
,
4
))
self
.
out_var
=
self
.
out_var
.
reshape
((
-
1
,
4
))
class
TestNpuDensityPriorBoxFlatten
(
TestNpuDensityPriorBoxOp
):
def
set_density
(
self
):
self
.
densities
=
[
3
,
4
]
self
.
fixed_sizes
=
[
1.0
,
2.0
]
self
.
fixed_ratios
=
[
1.0
]
self
.
layer_w
=
32
self
.
layer_h
=
32
self
.
image_w
=
40
self
.
image_h
=
40
self
.
flatten_to_2d
=
True
class
TestNpuDensityPriorBoxOp1
(
TestNpuDensityPriorBoxOp
):
def
set_density
(
self
):
super
(
TestNpuDensityPriorBoxOp1
,
self
).
set_density
()
self
.
layer_w
=
1
self
.
layer_h
=
1
class
TestNpuDensityPriorBoxOp2
(
TestNpuDensityPriorBoxOp
):
def
set_density
(
self
):
super
(
TestNpuDensityPriorBoxOp2
,
self
).
set_density
()
self
.
layer_w
=
15
self
.
layer_h
=
17
self
.
image_w
=
533
self
.
image_h
=
532
class
TestNpuDensityPriorBoxOp3
(
TestNpuDensityPriorBoxOp
):
def
set_density
(
self
):
super
(
TestNpuDensityPriorBoxOp3
,
self
).
set_density
()
self
.
fixed_ratios
=
[
1.0
,
4.0
]
class
TestNpuDensityPriorBoxOpFP16
(
TestNpuDensityPriorBoxOp
):
def
init_dtype
(
self
):
self
.
dtype
=
np
.
float16
def
init_test_params
(
self
):
super
(
TestNpuDensityPriorBoxOpFP16
,
self
).
init_test_params
()
self
.
atol
=
1e-3
self
.
clip
=
False
if
__name__
==
'__main__'
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录