lookup_table_op.h 9.5 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
L
Luo Tao 已提交
2 3 4 5 6 7 8 9 10 11 12 13

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
14 15 16

#pragma once

17 18 19
#include <string>
#include <vector>

Y
Yi Wang 已提交
20 21 22 23
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/selected_rows.h"
M
minqiyang 已提交
24
#include "paddle/fluid/operators/math/blas.h"
25

Q
Qiao Longfei 已提交
26
#ifdef PADDLE_WITH_DISTRIBUTE
Q
Qiao Longfei 已提交
27
#include "paddle/fluid/operators/distributed/parameter_prefetch.h"
Q
Qiao Longfei 已提交
28 29
#endif

30 31 32
namespace paddle {
namespace operators {

C
chengduoZH 已提交
33
using Tensor = framework::Tensor;
F
fengjiayi 已提交
34
using LoDTensor = framework::LoDTensor;
35
using SelectedRows = framework::SelectedRows;
36 37
using DDim = framework::DDim;

Q
qiaolongfei 已提交
38
constexpr int64_t kNoPadding = -1;
39 40

template <typename T>
Y
Yu Yang 已提交
41
class LookupTableKernel : public framework::OpKernel<T> {
42
 public:
43
  void Compute(const framework::ExecutionContext &context) const override {
44 45
    auto *ids_t = context.Input<LoDTensor>("Ids");      // int tensor
    auto *output_t = context.Output<LoDTensor>("Out");  // float tensor
46
    auto *table_var = context.InputVar("W");
47

H
hong 已提交
48 49 50
    auto id_name = context.InputNames("Ids").front();
    auto embedding_name = context.InputNames("W").front();
    auto out_name = context.OutputNames("Out").front();
Q
Qiao Longfei 已提交
51 52

    // for remote prefetch
Q
Qiao Longfei 已提交
53
    auto epmap = context.Attr<std::vector<std::string>>("epmap");
54
    auto remote_prefetch = context.Attr<bool>("remote_prefetch");
Q
Qiao Longfei 已提交
55 56
    auto height_sections =
        context.Attr<std::vector<int64_t>>("height_sections");
Q
Qiao Longfei 已提交
57
    auto table_names = context.Attr<std::vector<std::string>>("table_names");
Q
Qiao Longfei 已提交
58

59
    if (remote_prefetch && !epmap.empty()) {
Q
Qiao Longfei 已提交
60
// if epmap is not empty, then the parameter will be fetched from remote
61 62
// parameter server

Q
Qiao Longfei 已提交
63
#ifdef PADDLE_WITH_DISTRIBUTE
64 65 66
      operators::distributed::prefetch(id_name, out_name, embedding_name, false,
                                       table_names, epmap, height_sections,
                                       context, context.scope());
Q
Qiao Longfei 已提交
67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88
#else
      PADDLE_THROW(
          "paddle is not compiled with distribute support, can not do "
          "parameter prefetch!");
#endif
    } else {
      int64_t padding_idx = context.Attr<int64_t>("padding_idx");
      int64_t *ids = const_cast<int64_t *>(ids_t->data<int64_t>());
      int64_t ids_numel = ids_t->numel();

      if (table_var->IsType<LoDTensor>()) {
        auto *table_t = context.Input<LoDTensor>("W");
        int64_t row_number = table_t->dims()[0];
        int64_t row_width = table_t->dims()[1];

        auto *table = table_t->data<T>();
        auto *output = output_t->mutable_data<T>(context.GetPlace());

        for (int64_t i = 0; i < ids_numel; ++i) {
          if (padding_idx != kNoPadding && ids[i] == padding_idx) {
            memset(output + i * row_width, 0, row_width * sizeof(T));
          } else {
89 90 91 92 93 94 95 96 97 98 99 100
            PADDLE_ENFORCE_LT(
                ids[i], row_number,
                "Variable value (input) of OP(fluid.layers.embedding) "
                "expected >= 0 and < %ld, but got %ld. Please check input "
                "value.",
                row_number, ids[i]);
            PADDLE_ENFORCE_GE(
                ids[i], 0,
                "Variable value (input) of OP(fluid.layers.embedding) "
                "expected >= 0 and < %ld, but got %ld. Please check input "
                "value.",
                row_number, ids[i]);
Q
Qiao Longfei 已提交
101 102 103
            memcpy(output + i * row_width, table + ids[i] * row_width,
                   row_width * sizeof(T));
          }
104
        }
Q
Qiao Longfei 已提交
105 106 107 108 109
      } else if (table_var->IsType<SelectedRows>()) {
        const auto &table_t = table_var->Get<SelectedRows>();
        int64_t row_width = table_t.value().dims()[1];
        const auto *table = table_t.value().data<T>();
        auto *output = output_t->mutable_data<T>(context.GetPlace());
110
        auto input_data_type = table_t.value().type();
Q
Qiao Longfei 已提交
111 112 113 114
        for (int64_t i = 0; i < ids_numel; ++i) {
          if (padding_idx != kNoPadding && ids[i] == padding_idx) {
            memset(output + i * row_width, 0, row_width * sizeof(T));
          } else {
115 116 117 118 119
            PADDLE_ENFORCE_GE(
                ids[i], 0,
                "Variable value (input) of OP(fluid.layers.embedding) "
                "expected >= 0. But received %ld",
                ids[i]);
Q
Qiao Longfei 已提交
120
            auto id_index = table_t.Index(ids[i]);
121 122 123
            PADDLE_ENFORCE_GE(
                id_index, 0, "the input key should be exists. But received %d.",
                id_index);
124 125 126 127 128 129 130 131
            if (input_data_type == framework::proto::VarType::INT8) {
              memcpy(output + i * row_width, table + id_index * row_width,
                     row_width * sizeof(T));
            } else {
              auto blas = math::GetBlas<platform::CPUDeviceContext, T>(context);
              blas.VCOPY(row_width, table + id_index * row_width,
                         output + i * row_width);
            }
Q
Qiao Longfei 已提交
132
          }
133 134
        }
      }
135 136 137 138 139
    }
  }
};

template <typename T>
Y
Yu Yang 已提交
140
class LookupTableGradKernel : public framework::OpKernel<T> {
141
 public:
142
  void Compute(const framework::ExecutionContext &context) const override {
Q
qiaolongfei 已提交
143 144 145 146 147 148 149 150
    auto *table_var = context.InputVar("W");
    DDim table_dim;
    if (table_var->IsType<LoDTensor>()) {
      table_dim = context.Input<LoDTensor>("W")->dims();
    } else if (table_var->IsType<SelectedRows>()) {
      auto *table_t = context.Input<SelectedRows>("W");
      table_dim = table_t->value().dims();
    } else {
Q
qiaolongfei 已提交
151 152 153
      PADDLE_THROW(
          "The parameter W of a LookupTable "
          "must be either LoDTensor or SelectedRows");
Q
qiaolongfei 已提交
154 155
    }

156
    int64_t padding_idx = context.Attr<int64_t>("padding_idx");
157
    bool is_sparse = context.Attr<bool>("is_sparse");
158 159
    // Since paddings are not trainable and fixed in forward, the gradient of
    // paddings makes no sense and we don't deal with it in backward.
160
    if (is_sparse) {
161 162 163
      auto *ids = context.Input<LoDTensor>("Ids");
      auto *d_output = context.Input<LoDTensor>(framework::GradVarName("Out"));
      auto *d_table = context.Output<SelectedRows>(framework::GradVarName("W"));
164

165
      auto *ids_data = ids->data<int64_t>();
166
      int64_t ids_num = ids->numel();
167

M
minqiyang 已提交
168
      std::vector<int64_t> new_rows;
M
minqiyang 已提交
169 170
      new_rows.resize(ids_num);
      std::memcpy(&new_rows[0], ids_data, ids_num * sizeof(int64_t));
171
      d_table->set_rows(new_rows);
172

173
      auto *d_table_value = d_table->mutable_value();
174
      d_table_value->Resize({ids_num, table_dim[1]});
M
minqiyang 已提交
175
      // FIXME(minqiyang):
M
minqiyang 已提交
176 177
      // memory optimization will NOT reuse Tensor with SelectedRows
      // so we could just share the tensor here directly.
M
minqiyang 已提交
178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193
      // However, the InferVarType method will infer the output SelectedRows
      // to Tensor sometimes, which is a bug, so we will add an attribute
      // here to indicate the inplace and remove this attribute after
      // the InferVarType's bug was fixed
      bool grad_inplace = context.Attr<bool>("grad_inplace");
      if (grad_inplace) {
        d_table_value->ShareDataWith(*d_output);
      } else {
        d_table_value->mutable_data<T>(context.GetPlace());

        d_table->set_height(table_dim[0]);

        auto *d_output_data = d_output->data<T>();
        auto *d_table_data = d_table_value->data<T>();

        auto d_output_dims = d_output->dims();
194 195 196 197 198 199 200 201
        auto d_output_dims_2d =
            framework::flatten_to_2d(d_output_dims, d_output_dims.size() - 1);
        PADDLE_ENFORCE_EQ(d_table_value->dims(), d_output_dims_2d,
                          "ShapeError: The shape of lookup_table@Grad and "
                          "output@Grad should be same. "
                          "But received lookup_table@Grad's shape = [%s], "
                          "output@Grad's shape = [%s].",
                          d_table_value->dims(), d_output_dims_2d);
M
minqiyang 已提交
202 203
        memcpy(d_table_data, d_output_data, sizeof(T) * d_output->numel());
      }
204
    } else {
205 206 207
      auto *ids = context.Input<LoDTensor>("Ids");
      auto *d_output = context.Input<LoDTensor>(framework::GradVarName("Out"));
      auto *d_table = context.Output<LoDTensor>(framework::GradVarName("W"));
208

209
      auto *ids_data = ids->data<int64_t>();
210

211 212
      int64_t N = table_dim[0];
      int64_t D = table_dim[1];
213

214 215
      auto *d_output_data = d_output->data<T>();
      auto *d_table_data = d_table->mutable_data<T>(context.GetPlace());
216

217 218
      memset(d_table_data, 0, d_table->numel() * sizeof(T));

219
      for (int64_t i = 0; i < ids->numel(); ++i) {
Q
Qiao Longfei 已提交
220 221 222 223
        if (padding_idx != kNoPadding && ids_data[i] == padding_idx) {
          // the gradient of padding_idx should be 0, already done by memset, so
          // do nothing.
        } else {
224 225 226 227 228 229 230 231 232 233
          PADDLE_ENFORCE_LT(
              ids_data[i], N,
              "Variable value (input) of OP(fluid.layers.embedding) "
              "expected >= 0 and < %ld, but got %ld. Please check input value.",
              N, ids_data[i]);
          PADDLE_ENFORCE_GE(
              ids_data[i], 0,
              "Variable value (input) of OP(fluid.layers.embedding) "
              "expected >= 0 and < %ld, but got %ld. Please check input value.",
              N, ids_data[i]);
234 235 236
          for (int j = 0; j < D; ++j) {
            d_table_data[ids_data[i] * D + j] += d_output_data[i * D + j];
          }
237
        }
238 239 240 241 242 243 244
      }
    }
  }
};

}  // namespace operators
}  // namespace paddle