lookup_table_op.h 6.5 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
L
Luo Tao 已提交
2 3 4 5 6 7 8 9 10 11 12 13

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
14 15 16

#pragma once

17 18 19
#include <string>
#include <vector>

Y
Yi Wang 已提交
20 21 22 23
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/selected_rows.h"
M
minqiyang 已提交
24
#include "paddle/fluid/operators/math/blas.h"
25

Q
Qiao Longfei 已提交
26 27
#include "paddle/fluid/operators/distributed/parameter_prefetch.h"

28 29 30
namespace paddle {
namespace operators {

C
chengduoZH 已提交
31
using Tensor = framework::Tensor;
F
fengjiayi 已提交
32
using LoDTensor = framework::LoDTensor;
33
using SelectedRows = framework::SelectedRows;
34 35
using DDim = framework::DDim;

Q
qiaolongfei 已提交
36
constexpr int64_t kNoPadding = -1;
37 38

template <typename T>
Y
Yu Yang 已提交
39
class LookupTableKernel : public framework::OpKernel<T> {
40
 public:
41
  void Compute(const framework::ExecutionContext &context) const override {
42 43
    auto *ids_t = context.Input<LoDTensor>("Ids");      // int tensor
    auto *output_t = context.Output<LoDTensor>("Out");  // float tensor
44
    auto *table_var = context.InputVar("W");
45

46 47 48
    int64_t padding_idx = context.Attr<int64_t>("padding_idx");
    int64_t *ids = const_cast<int64_t *>(ids_t->data<int64_t>());
    int64_t ids_numel = ids_t->numel();
C
chengduoZH 已提交
49

50 51 52 53
    if (table_var->IsType<LoDTensor>()) {
      auto *table_t = context.Input<LoDTensor>("W");
      int64_t row_number = table_t->dims()[0];
      int64_t row_width = table_t->dims()[1];
54

55 56
      auto *table = table_t->data<T>();
      auto *output = output_t->mutable_data<T>(context.GetPlace());
57

C
chengduoZH 已提交
58
      for (int64_t i = 0; i < ids_numel; ++i) {
59 60 61 62
        if (padding_idx != kNoPadding && ids[i] == padding_idx) {
          memset(output + i * row_width, 0, row_width * sizeof(T));
        } else {
          PADDLE_ENFORCE_LT(ids[i], row_number);
63
          PADDLE_ENFORCE_GE(ids[i], 0, "ids %d", i);
64 65 66
          memcpy(output + i * row_width, table + ids[i] * row_width,
                 row_width * sizeof(T));
        }
67
      }
68 69 70 71 72 73
    } else if (table_var->IsType<SelectedRows>()) {
      const auto &table_t = table_var->Get<SelectedRows>();
      int64_t row_width = table_t.value().dims()[1];
      const auto *table = table_t.value().data<T>();
      auto *output = output_t->mutable_data<T>(context.GetPlace());

M
minqiyang 已提交
74
      auto blas = math::GetBlas<platform::CPUDeviceContext, T>(context);
C
chengduoZH 已提交
75
      for (int64_t i = 0; i < ids_numel; ++i) {
76 77
        if (padding_idx != kNoPadding && ids[i] == padding_idx) {
          memset(output + i * row_width, 0, row_width * sizeof(T));
78 79
        } else {
          PADDLE_ENFORCE_GE(ids[i], 0);
Y
fix ci  
Yancey1989 已提交
80 81
          auto id_index = table_t.Index(ids[i]);
          PADDLE_ENFORCE_GE(id_index, 0, "the input key should be exists.");
M
minqiyang 已提交
82 83
          blas.VCOPY(row_width, table + id_index * row_width,
                     output + i * row_width);
84 85
        }
      }
86 87 88 89 90
    }
  }
};

template <typename T>
Y
Yu Yang 已提交
91
class LookupTableGradKernel : public framework::OpKernel<T> {
92
 public:
93
  void Compute(const framework::ExecutionContext &context) const override {
Q
qiaolongfei 已提交
94 95 96 97 98 99 100 101
    auto *table_var = context.InputVar("W");
    DDim table_dim;
    if (table_var->IsType<LoDTensor>()) {
      table_dim = context.Input<LoDTensor>("W")->dims();
    } else if (table_var->IsType<SelectedRows>()) {
      auto *table_t = context.Input<SelectedRows>("W");
      table_dim = table_t->value().dims();
    } else {
Q
qiaolongfei 已提交
102 103 104
      PADDLE_THROW(
          "The parameter W of a LookupTable "
          "must be either LoDTensor or SelectedRows");
Q
qiaolongfei 已提交
105 106
    }

107
    bool is_sparse = context.Attr<bool>("is_sparse");
108 109
    // Since paddings are not trainable and fixed in forward, the gradient of
    // paddings makes no sense and we don't deal with it in backward.
110
    if (is_sparse) {
111 112 113
      auto *ids = context.Input<LoDTensor>("Ids");
      auto *d_output = context.Input<LoDTensor>(framework::GradVarName("Out"));
      auto *d_table = context.Output<SelectedRows>(framework::GradVarName("W"));
114

115
      auto *ids_data = ids->data<int64_t>();
116
      int64_t ids_num = ids->numel();
117

M
minqiyang 已提交
118
      std::vector<int64_t> new_rows;
M
minqiyang 已提交
119 120
      new_rows.resize(ids_num);
      std::memcpy(&new_rows[0], ids_data, ids_num * sizeof(int64_t));
121
      d_table->set_rows(new_rows);
122

123
      auto *d_table_value = d_table->mutable_value();
124
      d_table_value->Resize({ids_num, table_dim[1]});
M
minqiyang 已提交
125
      // FIXME(minqiyang):
M
minqiyang 已提交
126 127
      // memory optimization will NOT reuse Tensor with SelectedRows
      // so we could just share the tensor here directly.
M
minqiyang 已提交
128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148
      // However, the InferVarType method will infer the output SelectedRows
      // to Tensor sometimes, which is a bug, so we will add an attribute
      // here to indicate the inplace and remove this attribute after
      // the InferVarType's bug was fixed
      bool grad_inplace = context.Attr<bool>("grad_inplace");
      if (grad_inplace) {
        d_table_value->ShareDataWith(*d_output);
      } else {
        d_table_value->mutable_data<T>(context.GetPlace());

        d_table->set_height(table_dim[0]);

        auto *d_output_data = d_output->data<T>();
        auto *d_table_data = d_table_value->data<T>();

        auto d_output_dims = d_output->dims();
        PADDLE_ENFORCE_EQ(
            d_table_value->dims(),
            framework::flatten_to_2d(d_output_dims, d_output_dims.size() - 1));
        memcpy(d_table_data, d_output_data, sizeof(T) * d_output->numel());
      }
149
    } else {
150 151 152
      auto *ids = context.Input<LoDTensor>("Ids");
      auto *d_output = context.Input<LoDTensor>(framework::GradVarName("Out"));
      auto *d_table = context.Output<LoDTensor>(framework::GradVarName("W"));
153

154
      auto *ids_data = ids->data<int64_t>();
155

Q
qiaolongfei 已提交
156
      int N = table_dim[0];
F
fengjiayi 已提交
157
      int D = table_dim[1];
158

159 160
      auto *d_output_data = d_output->data<T>();
      auto *d_table_data = d_table->mutable_data<T>(context.GetPlace());
161

162 163
      memset(d_table_data, 0, d_table->numel() * sizeof(T));

164 165 166 167
      for (int64_t i = 0; i < ids->numel(); ++i) {
        PADDLE_ENFORCE_LT(ids_data[i], N);
        PADDLE_ENFORCE_GE(ids_data[i], 0);
        for (int j = 0; j < D; ++j) {
168
          d_table_data[ids_data[i] * D + j] += d_output_data[i * D + j];
169
        }
170 171 172 173 174 175 176
      }
    }
  }
};

}  // namespace operators
}  // namespace paddle