tracer.cc 12.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/imperative/tracer.h"

M
minqiyang 已提交
17
#include <memory>
M
minqiyang 已提交
18
#include <set>
M
minqiyang 已提交
19 20
#include <unordered_map>
#include <unordered_set>
M
minqiyang 已提交
21

M
minqiyang 已提交
22
#include "paddle/fluid/framework/var_type_inference.h"
M
minqiyang 已提交
23 24 25 26
#include "paddle/fluid/operators/math/math_function.h"
#include "paddle/fluid/platform/device_context.h"
#include "paddle/fluid/platform/enforce.h"

27
namespace paddle {
M
minqiyang 已提交
28 29 30 31 32
namespace imperative {

void CreateGradOp(const framework::OpDesc& op_desc,
                  const std::unordered_set<std::string>& no_grad_set,
                  const std::vector<framework::BlockDesc*>& grad_sub_block,
X
Xin Pan 已提交
33
                  std::vector<framework::OpDesc*>* grad_op_descs,
M
minqiyang 已提交
34
                  std::unordered_map<std::string, std::string>* grad_to_var) {
X
Xin Pan 已提交
35
  PADDLE_ENFORCE(grad_op_descs->empty());
X
Xin Pan 已提交
36 37 38
  const framework::OpInfo& op_info =
      framework::OpInfoMap::Instance().Get(op_desc.Type());
  if (!op_info.grad_op_maker_) return;
J
JiabinYang 已提交
39

X
Xin Pan 已提交
40 41
  std::vector<std::unique_ptr<framework::OpDesc>> descs =
      op_info.GradOpMaker()(op_desc, no_grad_set, grad_to_var, grad_sub_block);
X
Xin Pan 已提交
42 43 44
  for (auto& desc : descs) {
    grad_op_descs->emplace_back(desc.release());
  }
M
minqiyang 已提交
45 46
}

47 48
void InitGrad(VarBase* var, platform::DeviceContext* dev_ctx) {
  PADDLE_ENFORCE_NOT_NULL(var, "Could not get valid var base");
M
minqiyang 已提交
49 50
  PADDLE_ENFORCE_NOT_NULL(dev_ctx,
                          "Could not get valid device from forward op");
51 52 53 54 55 56 57 58 59

  if (var->grads_ == nullptr) {
    auto& var_t = var->var_->Get<framework::LoDTensor>();
    var->grads_ = new VarBase(var->GradName(), framework::proto::VarType::FP32,
                              framework::vectorize(var_t.dims()),
                              dev_ctx->GetPlace(), true, false);
    auto grad_t = var->grads_->var_->GetMutable<framework::LoDTensor>();
    operators::math::set_constant(*dev_ctx, grad_t, 0.0);
  }
M
minqiyang 已提交
60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77
}

platform::Place GetExpectedPlace(platform::Place place, VarBasePtrMap inputs) {
  platform::Place result = place;
  for (auto it : inputs) {
    for (VarBase* var : it.second) {
      platform::Place tmp_place =
          var->var_->Get<framework::LoDTensor>().place();
      if (!platform::is_same_place(tmp_place, result)) {
        PADDLE_THROW(
            "Input variable should keep in the same place: %s, but get place: "
            "%s of input %s instead",
            result, tmp_place, it.first);
      }
    }
  }

  return result;
M
minqiyang 已提交
78 79
}

80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
framework::VariableNameMap CreateInputVarNameMap(
    const OpBase* op, const VarBasePtrMap& varbase_map) {
  framework::VariableNameMap result;

  auto& info_map = framework::OpInfoMap::Instance();
  auto* op_info = info_map.GetNullable(op->Type());
  if (op_info == nullptr || op_info->proto_ == nullptr) {
    return result;
  }

  for (auto& in : op_info->Proto().inputs()) {
    auto it = varbase_map.find(in.name());
    if (it == varbase_map.end()) {
      PADDLE_ENFORCE(in.dispensable());
      result[in.name()] = {};
    } else {
      auto var_vector = it->second;
      std::vector<std::string> args;
      args.reserve(var_vector.size());
      for (VarBase* var_base : var_vector) {
        args.emplace_back(var_base->Name());
      }
      result[in.name()] = args;
    }
  }
  return result;
}

framework::VariableNameMap CreateOutputVarNameMap(
    const OpBase* op, const VarBasePtrMap& varbase_map) {
  framework::VariableNameMap result;

  auto& info_map = framework::OpInfoMap::Instance();
  auto* op_info = info_map.GetNullable(op->Type());
  if (op_info == nullptr || op_info->proto_ == nullptr) {
    return result;
  }

  for (auto& out : op_info->Proto().outputs()) {
    auto it = varbase_map.find(out.name());
    if (it == varbase_map.end()) {
      PADDLE_ENFORCE(out.dispensable());
      result[out.name()] = {};
    } else {
      auto var_vector = it->second;
      std::vector<std::string> args;
      args.reserve(var_vector.size());
      for (VarBase* var_base : var_vector) {
        args.emplace_back(var_base->Name());
      }
      result[out.name()] = args;
    }
  }
  return result;
}

M
minqiyang 已提交
136
Tracer::Tracer(framework::BlockDesc* root_block) : root_block_(root_block) {}
137

M
minqiyang 已提交
138
std::set<std::string> Tracer::Trace(OpBase* op, const VarBasePtrMap& inputs,
M
minqiyang 已提交
139
                                    VarBasePtrMap* outputs,
140
                                    framework::AttributeMap attrs_map,
M
minqiyang 已提交
141 142
                                    const platform::Place expected_place,
                                    const bool stop_gradient) {
M
minqiyang 已提交
143 144 145
  framework::VariableValueMap invars_map;
  framework::VariableValueMap outvars_map;

146 147
  // Construct input_vars_map and output_vars_map
  std::map<std::string, VarBase*> current_vars_map;
M
minqiyang 已提交
148 149 150
  op->input_vars_ = inputs;
  for (auto it : op->input_vars_) {
    auto& invars = invars_map[it.first];
M
minqiyang 已提交
151
    invars.reserve(it.second.size());
M
minqiyang 已提交
152
    for (VarBase* inp : it.second) {
153 154
      PADDLE_ENFORCE_NOT_NULL(inp->var_, "op %s input %s nullptr", op->Type(),
                              inp->Name());
M
minqiyang 已提交
155

M
minqiyang 已提交
156
      invars.emplace_back(inp->var_);
157 158
      if (!stop_gradient) {
        current_vars_map[inp->Name()] = inp;
M
minqiyang 已提交
159
      }
160 161 162
      VLOG(3) << "input var name: " << inp->Name()
              << " inited: " << inp->var_->IsInitialized()
              << " stop_grad: " << inp->IsStopGradient();
M
minqiyang 已提交
163
    }
M
minqiyang 已提交
164
    op->TrackPreOp(it.first, it.second);
M
minqiyang 已提交
165 166
  }

M
minqiyang 已提交
167
  op->output_vars_ = *outputs;
M
minqiyang 已提交
168 169 170
  for (auto it : op->output_vars_) {
    auto& outvars = outvars_map[it.first];
    const std::vector<VarBase*>& outputs = it.second;
M
minqiyang 已提交
171
    outvars.reserve(outputs.size());
172
    for (size_t i = 0U; i < outputs.size(); ++i) {
M
minqiyang 已提交
173
      VarBase* out = outputs[i];
M
minqiyang 已提交
174
      outvars.emplace_back(out->var_);
X
Xin Pan 已提交
175
      out->TrackPreOp(op, it.first, i, stop_gradient);
176 177 178
      if (!stop_gradient) {
        current_vars_map[out->Name()] = out;
      }
M
minqiyang 已提交
179

180 181 182
      VLOG(3) << "input var name: " << out->Name()
              << " inited: " << out->var_->IsInitialized()
              << " stop_grad: " << out->IsStopGradient();
M
minqiyang 已提交
183 184 185
    }
  }

186 187 188 189
  // Check attrs and create op
  framework::VariableNameMap invars_name_map =
      CreateInputVarNameMap(op, inputs);
  framework::VariableNameMap outvars_name_map =
M
minqiyang 已提交
190
      CreateOutputVarNameMap(op, *outputs);
191 192 193 194 195 196 197 198 199 200

  auto& info = framework::OpInfoMap::Instance().Get(op->Type());
  if (info.Checker() != nullptr) {
    info.Checker()->Check(&attrs_map);
  }

  std::unique_ptr<framework::OperatorBase> op_base =
      framework::OpRegistry::CreateOp(op->Type(), invars_name_map,
                                      outvars_name_map, attrs_map);

M
minqiyang 已提交
201
  if (info.infer_var_type_) {
M
minqiyang 已提交
202
    RuntimeInferVarTypeContext infer_var_type_ctx(&inputs, outputs, &attrs_map);
M
minqiyang 已提交
203
    info.infer_var_type_(&infer_var_type_ctx);
M
minqiyang 已提交
204 205
  }

206 207 208
  // TODO(minqiyang): Support infer var type in imperative mode
  // Run forward op
  VLOG(3) << "tracer running " << op->Type();
M
minqiyang 已提交
209 210 211 212 213 214 215 216
  framework::RuntimeContext ctx(invars_map, outvars_map);

  // TODO(panyx0718): Cache p.
  framework::OperatorWithKernel* op_kernel =
      dynamic_cast<framework::OperatorWithKernel*>(op_base.get());
  PADDLE_ENFORCE_NOT_NULL(op_kernel, "only support op with kernel");

  framework::Scope scope;
P
Paddle CI 已提交
217 218 219
  op->place_ = GetExpectedPlace(expected_place, inputs);
  PreparedOp prepared_op = PreparedOp::Prepare(ctx, *op_kernel, op->place_);
  prepared_op.op.RuntimeInferShape(scope, op->place_, ctx);
X
polish  
Xin Pan 已提交
220 221 222
  prepared_op.func(
      framework::ExecutionContext(prepared_op.op, scope, *prepared_op.dev_ctx,
                                  prepared_op.ctx, prepared_op.kernel_configs));
M
minqiyang 已提交
223

224
  // construct backward op
M
minqiyang 已提交
225
  std::set<std::string> vars_saved_for_backward;
M
minqiyang 已提交
226
  if (!stop_gradient) {
227 228 229
    VLOG(5) << "start construct backward op";

    // construct grad op descs
M
minqiyang 已提交
230
    op->attrs_ = attrs_map;
231 232
    std::unique_ptr<framework::OpDesc> fwd_op_desc(new framework::OpDesc(
        op->Type(), invars_name_map, outvars_name_map, attrs_map));
233 234
    std::unique_ptr<std::unordered_map<std::string, std::string>> grad_to_var(
        new std::unordered_map<std::string, std::string>());
235 236 237
    // NOTE(minqiyang): We don't support control flow op in imperative now
    // Add grad_block_ when we want to support it
    CreateGradOp(*fwd_op_desc, {}, {}, &op->grad_op_descs_, grad_to_var.get());
X
Xin Pan 已提交
238

239
    VLOG(5) << "create grad op desc: " << op->grad_op_descs_[0]->Type();
M
minqiyang 已提交
240

241 242 243 244 245 246
    const size_t grad_op_count = op->grad_op_descs_.size();

    op->grad_input_vars_.resize(grad_op_count);
    op->grad_output_vars_.resize(grad_op_count);

    for (size_t i = 0; i < grad_op_count; ++i) {
X
Xin Pan 已提交
247 248 249
      framework::OpDesc* grad_op_desc = op->grad_op_descs_[i];
      for (auto it : grad_op_desc->Inputs()) {
        auto& grad_in_vars = op->grad_input_vars_[i][it.first];
250
        grad_in_vars.reserve(it.second.size());
X
Xin Pan 已提交
251 252 253
        for (const std::string& grad_invar : it.second) {
          auto var_it = grad_to_var->find(grad_invar);
          if (var_it == grad_to_var->end()) {
254 255
            auto fwd_var_it = current_vars_map.find(grad_invar);
            PADDLE_ENFORCE(fwd_var_it != current_vars_map.end());
X
Xin Pan 已提交
256
            // Forward inputs or outputs.
M
minqiyang 已提交
257
            grad_in_vars.emplace_back(fwd_var_it->second);
X
Xin Pan 已提交
258
          } else {
259 260
            VarBase* var = current_vars_map[var_it->second];
            InitGrad(var, prepared_op.GetDeviceContext());
X
Xin Pan 已提交
261
            // Douts.
M
minqiyang 已提交
262
            grad_in_vars.emplace_back(var->grads_);
X
Xin Pan 已提交
263
          }
M
minqiyang 已提交
264 265

          vars_saved_for_backward.insert(it.first);
X
Xin Pan 已提交
266 267 268 269 270 271 272 273 274 275
        }
      }

      for (auto it : grad_op_desc->Outputs()) {
        auto& grad_out_vars = op->grad_output_vars_[i][it.first];
        for (const std::string& grad_outvar : it.second) {
          auto var_it = grad_to_var->find(grad_outvar);
          PADDLE_ENFORCE(var_it != grad_to_var->end(),
                         "Could not found the grad op output var, should this "
                         "operator %s's stop gradient be True",
276 277 278
                         op->Type());
          VarBase* var = current_vars_map[var_it->second];
          InitGrad(var, prepared_op.GetDeviceContext());
M
minqiyang 已提交
279
          grad_out_vars.push_back(var->grads_);
M
minqiyang 已提交
280 281 282 283 284
        }
      }
    }
  }

M
minqiyang 已提交
285
  return vars_saved_for_backward;
M
minqiyang 已提交
286 287
}

288 289 290
std::vector<VarBase*> Tracer::PyTrace(OpBase* op,
                                      const std::vector<VarBase*>& inputs,
                                      bool stop_gradient) {
291 292
  VLOG(3) << "py_trace " << op->Type();

X
Xin Pan 已提交
293
  op->input_vars_[PyLayer::kFwdInp] = inputs;
294 295 296 297

  std::vector<framework::Variable*> ret_vars =
      PyLayer::Apply(op->forward_id_, inputs);

M
minqiyang 已提交
298
  op->TrackPreOp(PyLayer::kFwdInp, inputs);
299

300 301 302 303 304 305 306
  std::vector<VarBase*>& outputs = op->output_vars_[PyLayer::kFwdOut];
  outputs.reserve(ret_vars.size());
  for (size_t i = 0U; i != ret_vars.size(); ++i) {
    framework::Variable* v = ret_vars[i];
    VarBase* out = new VarBase(string::Sprintf("%s_out_%d", op->Type(), i), v,
                               nullptr, stop_gradient);
    outputs.emplace_back(out);
X
Xin Pan 已提交
307
    out->TrackPreOp(op, PyLayer::kFwdOut, i, stop_gradient);
308
  }
309

310
  if (!stop_gradient) {
311
    VLOG(5) << "start construct backward op";
X
Xin Pan 已提交
312 313
    op->grad_input_vars_.resize(1);
    op->grad_output_vars_.resize(1);
X
Xin Pan 已提交
314
    auto& grad_input_vars =
X
Xin Pan 已提交
315
        op->grad_input_vars_[0][framework::GradVarName(PyLayer::kFwdInp)];
X
Xin Pan 已提交
316
    auto& grad_output_vars =
X
Xin Pan 已提交
317
        op->grad_output_vars_[0][framework::GradVarName(PyLayer::kFwdOut)];
318

M
minqiyang 已提交
319 320
    for (VarBase* inp : inputs) {
      grad_input_vars.push_back(inp);
321 322
    }
    for (VarBase* out : outputs) {
M
minqiyang 已提交
323
      grad_input_vars.push_back(out);
324
    }
M
minqiyang 已提交
325

326
    // TODO(minqiyang): Add GPU support for PyLayer, only support CPU now
M
minqiyang 已提交
327
    platform::CPUPlace place;
328
    for (VarBase* out : outputs) {
329
      InitGrad(out, platform::DeviceContextPool::Instance().Get(place));
M
minqiyang 已提交
330
      grad_input_vars.push_back(out->grads_);
331
    }
M
minqiyang 已提交
332

333 334
    for (VarBase* inp : inputs) {
      InitGrad(inp, platform::DeviceContextPool::Instance().Get(place));
M
minqiyang 已提交
335
      grad_output_vars.push_back(inp->grads_);
336 337 338 339 340
    }
  }
  return outputs;
}

M
minqiyang 已提交
341
}  // namespace imperative
342
}  // namespace paddle