tracer.cc 12.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/imperative/tracer.h"

M
minqiyang 已提交
17
#include <memory>
M
minqiyang 已提交
18
#include <set>
M
minqiyang 已提交
19 20
#include <unordered_map>
#include <unordered_set>
M
minqiyang 已提交
21

M
minqiyang 已提交
22 23 24 25
#include "paddle/fluid/operators/math/math_function.h"
#include "paddle/fluid/platform/device_context.h"
#include "paddle/fluid/platform/enforce.h"

26 27 28 29 30 31 32 33 34
#ifdef WITH_GPERFTOOLS
#include "gperftools/profiler.h"
#endif

DEFINE_string(
    tracer_profile_fname, "",
    "Profiler filename for imperative tracer, which generated by gperftools."
    "Only valid when compiled `WITH_PROFILER=ON`. Empty if disable.");

35
namespace paddle {
M
minqiyang 已提交
36 37
namespace imperative {

38 39 40 41 42
static std::once_flag gTracerProfileOnce;
#ifdef WITH_GPERFTOOLS
static bool gTracerProfilerStarted = false;
#endif

M
minqiyang 已提交
43 44 45
void CreateGradOp(const framework::OpDesc& op_desc,
                  const std::unordered_set<std::string>& no_grad_set,
                  const std::vector<framework::BlockDesc*>& grad_sub_block,
X
Xin Pan 已提交
46
                  std::vector<framework::OpDesc*>* grad_op_descs,
M
minqiyang 已提交
47
                  std::unordered_map<std::string, std::string>* grad_to_var) {
X
Xin Pan 已提交
48 49
  PADDLE_ENFORCE(grad_op_descs->empty());
  std::vector<std::unique_ptr<framework::OpDesc>> descs =
M
minqiyang 已提交
50 51 52
      framework::OpInfoMap::Instance()
          .Get(op_desc.Type())
          .GradOpMaker()(op_desc, no_grad_set, grad_to_var, grad_sub_block);
J
JiabinYang 已提交
53

X
Xin Pan 已提交
54 55 56
  for (auto& desc : descs) {
    grad_op_descs->emplace_back(desc.release());
  }
M
minqiyang 已提交
57 58
}

59 60
void InitGrad(VarBase* var, platform::DeviceContext* dev_ctx) {
  PADDLE_ENFORCE_NOT_NULL(var, "Could not get valid var base");
M
minqiyang 已提交
61 62
  PADDLE_ENFORCE_NOT_NULL(dev_ctx,
                          "Could not get valid device from forward op");
63 64 65 66 67 68 69 70 71

  if (var->grads_ == nullptr) {
    auto& var_t = var->var_->Get<framework::LoDTensor>();
    var->grads_ = new VarBase(var->GradName(), framework::proto::VarType::FP32,
                              framework::vectorize(var_t.dims()),
                              dev_ctx->GetPlace(), true, false);
    auto grad_t = var->grads_->var_->GetMutable<framework::LoDTensor>();
    operators::math::set_constant(*dev_ctx, grad_t, 0.0);
  }
M
minqiyang 已提交
72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
}

platform::Place GetExpectedPlace(platform::Place place, VarBasePtrMap inputs) {
  platform::Place result = place;
  for (auto it : inputs) {
    for (VarBase* var : it.second) {
      platform::Place tmp_place =
          var->var_->Get<framework::LoDTensor>().place();
      if (!platform::is_same_place(tmp_place, result)) {
        PADDLE_THROW(
            "Input variable should keep in the same place: %s, but get place: "
            "%s of input %s instead",
            result, tmp_place, it.first);
      }
    }
  }

  return result;
M
minqiyang 已提交
90 91
}

92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147
framework::VariableNameMap CreateInputVarNameMap(
    const OpBase* op, const VarBasePtrMap& varbase_map) {
  framework::VariableNameMap result;

  auto& info_map = framework::OpInfoMap::Instance();
  auto* op_info = info_map.GetNullable(op->Type());
  if (op_info == nullptr || op_info->proto_ == nullptr) {
    return result;
  }

  for (auto& in : op_info->Proto().inputs()) {
    auto it = varbase_map.find(in.name());
    if (it == varbase_map.end()) {
      PADDLE_ENFORCE(in.dispensable());
      result[in.name()] = {};
    } else {
      auto var_vector = it->second;
      std::vector<std::string> args;
      args.reserve(var_vector.size());
      for (VarBase* var_base : var_vector) {
        args.emplace_back(var_base->Name());
      }
      result[in.name()] = args;
    }
  }
  return result;
}

framework::VariableNameMap CreateOutputVarNameMap(
    const OpBase* op, const VarBasePtrMap& varbase_map) {
  framework::VariableNameMap result;

  auto& info_map = framework::OpInfoMap::Instance();
  auto* op_info = info_map.GetNullable(op->Type());
  if (op_info == nullptr || op_info->proto_ == nullptr) {
    return result;
  }

  for (auto& out : op_info->Proto().outputs()) {
    auto it = varbase_map.find(out.name());
    if (it == varbase_map.end()) {
      PADDLE_ENFORCE(out.dispensable());
      result[out.name()] = {};
    } else {
      auto var_vector = it->second;
      std::vector<std::string> args;
      args.reserve(var_vector.size());
      for (VarBase* var_base : var_vector) {
        args.emplace_back(var_base->Name());
      }
      result[out.name()] = args;
    }
  }
  return result;
}

148 149 150 151 152 153 154 155 156 157 158 159 160 161
Tracer::Tracer(framework::BlockDesc* root_block) : root_block_(root_block) {
  if (!FLAGS_tracer_profile_fname.empty()) {
    std::call_once(gTracerProfileOnce, [] {
#ifdef WITH_GPERFTOOLS
      ProfilerStart(FLAGS_tracer_profile_fname.c_str());
      gTracerProfilerStarted = true;
#else
      LOG(WARNING) << "Paddle is not compiled with gperftools. "
                      "FLAGS_tracer_profile_fname will be ignored";
#endif
    });
  }
}

M
minqiyang 已提交
162 163
std::set<std::string> Tracer::Trace(OpBase* op, const VarBasePtrMap& inputs,
                                    const VarBasePtrMap& outputs,
164
                                    framework::AttributeMap attrs_map,
M
minqiyang 已提交
165 166
                                    const platform::Place expected_place,
                                    const bool stop_gradient) {
167 168 169 170 171 172
#ifdef WITH_GPERFTOOLS
  if (gTracerProfilerStarted) {
    ProfilerFlush();
  }
#endif

M
minqiyang 已提交
173 174 175
  framework::VariableValueMap invars_map;
  framework::VariableValueMap outvars_map;

176 177
  // Construct input_vars_map and output_vars_map
  std::map<std::string, VarBase*> current_vars_map;
M
minqiyang 已提交
178 179 180
  op->input_vars_ = inputs;
  for (auto it : op->input_vars_) {
    auto& invars = invars_map[it.first];
M
minqiyang 已提交
181
    invars.reserve(it.second.size());
M
minqiyang 已提交
182
    for (VarBase* inp : it.second) {
183 184
      PADDLE_ENFORCE_NOT_NULL(inp->var_, "op %s input %s nullptr", op->Type(),
                              inp->Name());
M
minqiyang 已提交
185

M
minqiyang 已提交
186
      invars.emplace_back(inp->var_);
187 188 189
      op->TrackPreOp(inp, it.first);
      if (!stop_gradient) {
        current_vars_map[inp->Name()] = inp;
M
minqiyang 已提交
190
      }
191 192 193
      VLOG(3) << "input var name: " << inp->Name()
              << " inited: " << inp->var_->IsInitialized()
              << " stop_grad: " << inp->IsStopGradient();
M
minqiyang 已提交
194 195 196 197 198 199 200
    }
  }

  op->output_vars_ = outputs;
  for (auto it : op->output_vars_) {
    auto& outvars = outvars_map[it.first];
    const std::vector<VarBase*>& outputs = it.second;
M
minqiyang 已提交
201
    outvars.reserve(outputs.size());
202
    for (size_t i = 0U; i < outputs.size(); ++i) {
M
minqiyang 已提交
203
      VarBase* out = outputs[i];
M
minqiyang 已提交
204
      outvars.emplace_back(out->var_);
X
Xin Pan 已提交
205
      out->TrackPreOp(op, it.first, i, stop_gradient);
206 207 208
      if (!stop_gradient) {
        current_vars_map[out->Name()] = out;
      }
M
minqiyang 已提交
209

210 211 212
      VLOG(3) << "input var name: " << out->Name()
              << " inited: " << out->var_->IsInitialized()
              << " stop_grad: " << out->IsStopGradient();
M
minqiyang 已提交
213 214 215
    }
  }

216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233
  // Check attrs and create op
  framework::VariableNameMap invars_name_map =
      CreateInputVarNameMap(op, inputs);
  framework::VariableNameMap outvars_name_map =
      CreateOutputVarNameMap(op, outputs);

  auto& info = framework::OpInfoMap::Instance().Get(op->Type());
  if (info.Checker() != nullptr) {
    info.Checker()->Check(&attrs_map);
  }

  std::unique_ptr<framework::OperatorBase> op_base =
      framework::OpRegistry::CreateOp(op->Type(), invars_name_map,
                                      outvars_name_map, attrs_map);

  // TODO(minqiyang): Support infer var type in imperative mode
  // Run forward op
  VLOG(3) << "tracer running " << op->Type();
M
minqiyang 已提交
234 235 236 237 238 239 240 241
  framework::RuntimeContext ctx(invars_map, outvars_map);

  // TODO(panyx0718): Cache p.
  framework::OperatorWithKernel* op_kernel =
      dynamic_cast<framework::OperatorWithKernel*>(op_base.get());
  PADDLE_ENFORCE_NOT_NULL(op_kernel, "only support op with kernel");

  framework::Scope scope;
P
Paddle CI 已提交
242 243 244
  op->place_ = GetExpectedPlace(expected_place, inputs);
  PreparedOp prepared_op = PreparedOp::Prepare(ctx, *op_kernel, op->place_);
  prepared_op.op.RuntimeInferShape(scope, op->place_, ctx);
X
polish  
Xin Pan 已提交
245 246 247
  prepared_op.func(
      framework::ExecutionContext(prepared_op.op, scope, *prepared_op.dev_ctx,
                                  prepared_op.ctx, prepared_op.kernel_configs));
M
minqiyang 已提交
248

249
  // construct backward op
M
minqiyang 已提交
250
  std::set<std::string> vars_saved_for_backward;
M
minqiyang 已提交
251
  if (!stop_gradient) {
252 253 254 255 256
    VLOG(5) << "start construct backward op";

    // construct grad op descs
    std::unique_ptr<framework::OpDesc> fwd_op_desc(new framework::OpDesc(
        op->Type(), invars_name_map, outvars_name_map, attrs_map));
257 258
    std::unique_ptr<std::unordered_map<std::string, std::string>> grad_to_var(
        new std::unordered_map<std::string, std::string>());
259 260 261
    // NOTE(minqiyang): We don't support control flow op in imperative now
    // Add grad_block_ when we want to support it
    CreateGradOp(*fwd_op_desc, {}, {}, &op->grad_op_descs_, grad_to_var.get());
X
Xin Pan 已提交
262

263
    VLOG(5) << "create grad op desc: " << op->grad_op_descs_[0]->Type();
M
minqiyang 已提交
264

265 266 267 268 269 270
    const size_t grad_op_count = op->grad_op_descs_.size();

    op->grad_input_vars_.resize(grad_op_count);
    op->grad_output_vars_.resize(grad_op_count);

    for (size_t i = 0; i < grad_op_count; ++i) {
X
Xin Pan 已提交
271 272 273
      framework::OpDesc* grad_op_desc = op->grad_op_descs_[i];
      for (auto it : grad_op_desc->Inputs()) {
        auto& grad_in_vars = op->grad_input_vars_[i][it.first];
274
        grad_in_vars.reserve(it.second.size());
X
Xin Pan 已提交
275 276 277
        for (const std::string& grad_invar : it.second) {
          auto var_it = grad_to_var->find(grad_invar);
          if (var_it == grad_to_var->end()) {
278 279
            auto fwd_var_it = current_vars_map.find(grad_invar);
            PADDLE_ENFORCE(fwd_var_it != current_vars_map.end());
X
Xin Pan 已提交
280
            // Forward inputs or outputs.
281
            grad_in_vars.emplace_back(fwd_var_it->second->var_);
X
Xin Pan 已提交
282
          } else {
283 284
            VarBase* var = current_vars_map[var_it->second];
            InitGrad(var, prepared_op.GetDeviceContext());
X
Xin Pan 已提交
285
            // Douts.
286
            grad_in_vars.emplace_back(var->grads_->var_);
X
Xin Pan 已提交
287
          }
M
minqiyang 已提交
288 289

          vars_saved_for_backward.insert(it.first);
X
Xin Pan 已提交
290 291 292 293 294 295 296 297 298 299
        }
      }

      for (auto it : grad_op_desc->Outputs()) {
        auto& grad_out_vars = op->grad_output_vars_[i][it.first];
        for (const std::string& grad_outvar : it.second) {
          auto var_it = grad_to_var->find(grad_outvar);
          PADDLE_ENFORCE(var_it != grad_to_var->end(),
                         "Could not found the grad op output var, should this "
                         "operator %s's stop gradient be True",
300 301 302
                         op->Type());
          VarBase* var = current_vars_map[var_it->second];
          InitGrad(var, prepared_op.GetDeviceContext());
X
Xin Pan 已提交
303
          grad_out_vars.push_back(var->grads_->var_);
M
minqiyang 已提交
304 305 306 307 308
        }
      }
    }
  }

M
minqiyang 已提交
309
  return vars_saved_for_backward;
M
minqiyang 已提交
310 311
}

312 313 314
std::vector<VarBase*> Tracer::PyTrace(OpBase* op,
                                      const std::vector<VarBase*>& inputs,
                                      bool stop_gradient) {
315 316
  VLOG(3) << "py_trace " << op->Type();

X
Xin Pan 已提交
317
  op->input_vars_[PyLayer::kFwdInp] = inputs;
318 319 320 321

  std::vector<framework::Variable*> ret_vars =
      PyLayer::Apply(op->forward_id_, inputs);

322
  for (VarBase* inp : inputs) {
323
    op->TrackPreOp(inp, PyLayer::kFwdInp);
324 325
  }

326 327 328 329 330 331 332
  std::vector<VarBase*>& outputs = op->output_vars_[PyLayer::kFwdOut];
  outputs.reserve(ret_vars.size());
  for (size_t i = 0U; i != ret_vars.size(); ++i) {
    framework::Variable* v = ret_vars[i];
    VarBase* out = new VarBase(string::Sprintf("%s_out_%d", op->Type(), i), v,
                               nullptr, stop_gradient);
    outputs.emplace_back(out);
X
Xin Pan 已提交
333
    out->TrackPreOp(op, PyLayer::kFwdOut, i, stop_gradient);
334
  }
335

336
  if (!stop_gradient) {
337
    VLOG(5) << "start construct backward op";
X
Xin Pan 已提交
338 339
    op->grad_input_vars_.resize(1);
    op->grad_output_vars_.resize(1);
X
Xin Pan 已提交
340
    auto& grad_input_vars =
X
Xin Pan 已提交
341
        op->grad_input_vars_[0][framework::GradVarName(PyLayer::kFwdInp)];
X
Xin Pan 已提交
342
    auto& grad_output_vars =
X
Xin Pan 已提交
343
        op->grad_output_vars_[0][framework::GradVarName(PyLayer::kFwdOut)];
344 345 346 347 348 349 350

    for (const VarBase* inp : inputs) {
      grad_input_vars.push_back(inp->var_);
    }
    for (VarBase* out : outputs) {
      grad_input_vars.push_back(out->var_);
    }
M
minqiyang 已提交
351

352
    // TODO(minqiyang): Add GPU support for PyLayer, only support CPU now
M
minqiyang 已提交
353
    platform::CPUPlace place;
354
    for (VarBase* out : outputs) {
355
      InitGrad(out, platform::DeviceContextPool::Instance().Get(place));
M
minqiyang 已提交
356
      grad_input_vars.push_back(out->grads_->var_);
357
    }
M
minqiyang 已提交
358

359 360
    for (VarBase* inp : inputs) {
      InitGrad(inp, platform::DeviceContextPool::Instance().Get(place));
M
minqiyang 已提交
361
      grad_output_vars.push_back(inp->grads_->var_);
362 363 364 365 366
    }
  }
  return outputs;
}

M
minqiyang 已提交
367
}  // namespace imperative
368
}  // namespace paddle