elementwise_mul_op.cu 7.3 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
14

W
Wu Yi 已提交
15
#include "paddle/fluid/operators/elementwise/elementwise_mul_op.h"
16
#include "paddle/fluid/operators/elementwise/elementwise_op_broadcast.cu.h"
17
#include "paddle/fluid/operators/reduce_ops/reduce_op.cu.h"
18 19
#include "paddle/fluid/platform/complex.h"
#include "paddle/fluid/platform/float16.h"
20

21 22 23 24
// only can include the headers in paddle/top/api dirs
#include "paddle/pten/api/lib/utils/tensor_utils.h"
#include "paddle/pten/include/core.h"
#include "paddle/pten/include/math.h"
25
namespace ops = paddle::operators;
W
Wu Yi 已提交
26
namespace plat = paddle::platform;
27

28 29 30
namespace paddle {
namespace operators {

31 32 33 34 35
template <typename T>
class ElementwiseMulKernel<platform::CUDADeviceContext, T>
    : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
Y
YuanRisheng 已提交
36 37 38 39 40
    auto x_var = ctx.InputVar("X");
    PADDLE_ENFORCE_EQ(x_var != nullptr, true,
                      platform::errors::InvalidArgument(
                          "Cannot get input Variable X, Variable name = %s.",
                          ctx.InputName("X")));
41 42
    const auto& cuda_ctx =
        ctx.template device_context<platform::CUDADeviceContext>();
Y
YuanRisheng 已提交
43 44 45 46 47 48 49 50 51 52 53 54 55
    if (x_var->IsType<framework::SelectedRows>()) {
      framework::Tensor x_for_selectedrows;
      std::vector<const framework::Tensor*> ins;
      std::vector<framework::Tensor*> outs;
      int axis =
          PackTensorsIntoVector<T>(ctx, &ins, &outs, &x_for_selectedrows);
      LaunchElementwiseCudaKernel<ElementwiseType::kBinary, T, T>(
          cuda_ctx, ins, &outs, axis, MulFunctor<T>());
    } else if (x_var->IsType<framework::LoDTensor>()) {
      auto* x_lod = ctx.Input<framework::LoDTensor>("X");
      auto* y_lod = ctx.Input<framework::LoDTensor>("Y");
      auto* z_lod = ctx.Output<framework::LoDTensor>("Out");
      z_lod->mutable_data<T>(ctx.GetPlace());
56

Y
YuanRisheng 已提交
57 58 59 60
      int axis = ctx.Attr<int>("axis");
      auto pt_x = paddle::experimental::MakePtenDenseTensor(*x_lod);
      auto pt_y = paddle::experimental::MakePtenDenseTensor(*y_lod);
      auto pt_z = paddle::experimental::MakePtenDenseTensor(*z_lod);
61 62
      pten::MultiplyKernel<T>(cuda_ctx, *pt_x.get(), *pt_y.get(), axis,
                              pt_z.get());
Y
YuanRisheng 已提交
63 64 65 66 67 68
    } else {
      PADDLE_THROW(platform::errors::InvalidArgument(
          "X's type[%s] is not supported by elementwise_op. X's type should be "
          "LoDTensor or SelectedRows.",
          framework::ToTypeName(x_var->Type())));
    }
69 70 71 72 73
  }
};

template <typename DeviceContext, typename T>
typename std::enable_if<
74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106
    std::is_same<DeviceContext, platform::CUDADeviceContext>::value>::type
ElementwiseMulGrad(const framework::ExecutionContext& ctx,
                   const framework::Tensor* x, const framework::Tensor* y,
                   const framework::Tensor* out, const framework::Tensor* dout,
                   framework::Tensor* dx, framework::Tensor* dy) {
  int axis = ctx.Attr<int>("axis");
  const auto& dev_ctx =
      ctx.template device_context<platform::CUDADeviceContext>();
  const auto place = ctx.GetPlace();

  if (dx != nullptr && dy != nullptr) {
    dx->mutable_data<T>(place);
    if (dx->IsSharedBufferWith(*dout)) {
      dx->clear();
      dx->mutable_data<T>(x->dims(), place);
    }
    std::vector<const framework::Tensor*> ins = {dout, y, x};
    GetGradXAndYOut<ElementwiseType::kBinary, T>(
        dev_ctx, place, axis, ins, dout, dx, dy, MulGradXYFunctor<T, T>());
  } else if (dx != nullptr && dy == nullptr) {
    dx->mutable_data<T>(place);
    if (dx->IsSharedBufferWith(*dout)) {
      dx->clear();
      dx->mutable_data<T>(x->dims(), place);
    }
    std::vector<const framework::Tensor*> ins = {dout, y};
    GetGradXOrYOut<ElementwiseType::kBinary, T>(dev_ctx, place, axis, ins, dout,
                                                dx, MulGradFunctor<T>());
  } else if (dx == nullptr && dy != nullptr) {
    std::vector<const framework::Tensor*> ins = {dout, x};
    GetGradXOrYOut<ElementwiseType::kBinary, T>(dev_ctx, place, axis, ins, dout,
                                                dy, MulGradFunctor<T>());
  }
107
}
108 109 110 111

}  // namespace operators
}  // namespace paddle

Q
QI JUN 已提交
112
REGISTER_OP_CUDA_KERNEL(
W
Wu Yi 已提交
113 114 115 116
    elementwise_mul, ops::ElementwiseMulKernel<plat::CUDADeviceContext, float>,
    ops::ElementwiseMulKernel<plat::CUDADeviceContext, double>,
    ops::ElementwiseMulKernel<plat::CUDADeviceContext, int>,
    ops::ElementwiseMulKernel<plat::CUDADeviceContext, int64_t>,
W
will-jl944 已提交
117
    ops::ElementwiseMulKernel<plat::CUDADeviceContext, bool>,
118
    ops::ElementwiseMulKernel<plat::CUDADeviceContext, plat::float16>,
119 120
    ops::ElementwiseMulKernel<plat::CUDADeviceContext, plat::complex<float>>,
    ops::ElementwiseMulKernel<plat::CUDADeviceContext, plat::complex<double>>);
Q
QI JUN 已提交
121
REGISTER_OP_CUDA_KERNEL(
122
    elementwise_mul_grad,
W
Wu Yi 已提交
123 124 125 126
    ops::ElementwiseMulGradKernel<plat::CUDADeviceContext, float>,
    ops::ElementwiseMulGradKernel<plat::CUDADeviceContext, double>,
    ops::ElementwiseMulGradKernel<plat::CUDADeviceContext, int>,
    ops::ElementwiseMulGradKernel<plat::CUDADeviceContext, int64_t>,
W
will-jl944 已提交
127
    ops::ElementwiseMulGradKernel<plat::CUDADeviceContext, bool>,
128
    ops::ElementwiseMulGradKernel<plat::CUDADeviceContext, plat::float16>,
129 130 131 132
    ops::ElementwiseMulGradKernel<plat::CUDADeviceContext,
                                  plat::complex<float>>,
    ops::ElementwiseMulGradKernel<plat::CUDADeviceContext,
                                  plat::complex<double>>);
133 134 135 136 137
REGISTER_OP_CUDA_KERNEL(
    elementwise_mul_grad_grad,
    ops::ElementwiseMulDoubleGradKernel<plat::CUDADeviceContext, float>,
    ops::ElementwiseMulDoubleGradKernel<plat::CUDADeviceContext, double>,
    ops::ElementwiseMulDoubleGradKernel<plat::CUDADeviceContext, int>,
138
    ops::ElementwiseMulDoubleGradKernel<plat::CUDADeviceContext, int64_t>,
W
will-jl944 已提交
139
    ops::ElementwiseMulDoubleGradKernel<plat::CUDADeviceContext, bool>,
140
    ops::ElementwiseMulDoubleGradKernel<plat::CUDADeviceContext, plat::float16>,
141
    ops::ElementwiseMulDoubleGradKernel<plat::CUDADeviceContext,
142
                                        plat::complex<float>>,
143
    ops::ElementwiseMulDoubleGradKernel<plat::CUDADeviceContext,
144
                                        plat::complex<double>>);
145 146 147 148 149 150 151 152 153 154 155 156
REGISTER_OP_CUDA_KERNEL(
    elementwise_mul_triple_grad,
    ops::ElementwiseMulTripleGradKernel<plat::CUDADeviceContext, float>,
    ops::ElementwiseMulTripleGradKernel<plat::CUDADeviceContext, double>,
    ops::ElementwiseMulTripleGradKernel<plat::CUDADeviceContext, int>,
    ops::ElementwiseMulTripleGradKernel<plat::CUDADeviceContext, int64_t>,
    ops::ElementwiseMulTripleGradKernel<plat::CUDADeviceContext, bool>,
    ops::ElementwiseMulTripleGradKernel<plat::CUDADeviceContext, plat::float16>,
    ops::ElementwiseMulTripleGradKernel<plat::CUDADeviceContext,
                                        plat::complex<float>>,
    ops::ElementwiseMulTripleGradKernel<plat::CUDADeviceContext,
                                        plat::complex<double>>);