elementwise_mul_op.cu 7.0 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
14

W
Wu Yi 已提交
15
#include "paddle/fluid/operators/elementwise/elementwise_mul_op.h"
16
#include "paddle/fluid/operators/reduce_ops/reduce_op.cu.h"
17 18

namespace ops = paddle::operators;
W
Wu Yi 已提交
19
namespace plat = paddle::platform;
20

21 22 23
namespace paddle {
namespace operators {

24 25 26 27 28
template <typename T>
class ElementwiseMulKernel<platform::CUDADeviceContext, T>
    : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
Y
YuanRisheng 已提交
29 30 31 32 33
    auto x_var = ctx.InputVar("X");
    PADDLE_ENFORCE_EQ(x_var != nullptr, true,
                      platform::errors::InvalidArgument(
                          "Cannot get input Variable X, Variable name = %s.",
                          ctx.InputName("X")));
34 35
    const auto& cuda_ctx =
        ctx.template device_context<platform::CUDADeviceContext>();
Y
YuanRisheng 已提交
36 37 38 39 40 41 42 43 44 45 46 47 48
    if (x_var->IsType<framework::SelectedRows>()) {
      framework::Tensor x_for_selectedrows;
      std::vector<const framework::Tensor*> ins;
      std::vector<framework::Tensor*> outs;
      int axis =
          PackTensorsIntoVector<T>(ctx, &ins, &outs, &x_for_selectedrows);
      LaunchElementwiseCudaKernel<ElementwiseType::kBinary, T, T>(
          cuda_ctx, ins, &outs, axis, MulFunctor<T>());
    } else if (x_var->IsType<framework::LoDTensor>()) {
      auto* x_lod = ctx.Input<framework::LoDTensor>("X");
      auto* y_lod = ctx.Input<framework::LoDTensor>("Y");
      auto* z_lod = ctx.Output<framework::LoDTensor>("Out");
      z_lod->mutable_data<T>(ctx.GetPlace());
49

Y
YuanRisheng 已提交
50 51 52 53
      int axis = ctx.Attr<int>("axis");
      auto pt_x = paddle::experimental::MakePtenDenseTensor(*x_lod);
      auto pt_y = paddle::experimental::MakePtenDenseTensor(*y_lod);
      auto pt_z = paddle::experimental::MakePtenDenseTensor(*z_lod);
54 55
      pten::MultiplyKernel<T>(cuda_ctx, *pt_x.get(), *pt_y.get(), axis,
                              pt_z.get());
Y
YuanRisheng 已提交
56 57 58 59 60 61
    } else {
      PADDLE_THROW(platform::errors::InvalidArgument(
          "X's type[%s] is not supported by elementwise_op. X's type should be "
          "LoDTensor or SelectedRows.",
          framework::ToTypeName(x_var->Type())));
    }
62 63 64 65 66
  }
};

template <typename DeviceContext, typename T>
typename std::enable_if<
67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99
    std::is_same<DeviceContext, platform::CUDADeviceContext>::value>::type
ElementwiseMulGrad(const framework::ExecutionContext& ctx,
                   const framework::Tensor* x, const framework::Tensor* y,
                   const framework::Tensor* out, const framework::Tensor* dout,
                   framework::Tensor* dx, framework::Tensor* dy) {
  int axis = ctx.Attr<int>("axis");
  const auto& dev_ctx =
      ctx.template device_context<platform::CUDADeviceContext>();
  const auto place = ctx.GetPlace();

  if (dx != nullptr && dy != nullptr) {
    dx->mutable_data<T>(place);
    if (dx->IsSharedBufferWith(*dout)) {
      dx->clear();
      dx->mutable_data<T>(x->dims(), place);
    }
    std::vector<const framework::Tensor*> ins = {dout, y, x};
    GetGradXAndYOut<ElementwiseType::kBinary, T>(
        dev_ctx, place, axis, ins, dout, dx, dy, MulGradXYFunctor<T, T>());
  } else if (dx != nullptr && dy == nullptr) {
    dx->mutable_data<T>(place);
    if (dx->IsSharedBufferWith(*dout)) {
      dx->clear();
      dx->mutable_data<T>(x->dims(), place);
    }
    std::vector<const framework::Tensor*> ins = {dout, y};
    GetGradXOrYOut<ElementwiseType::kBinary, T>(dev_ctx, place, axis, ins, dout,
                                                dx, MulGradFunctor<T>());
  } else if (dx == nullptr && dy != nullptr) {
    std::vector<const framework::Tensor*> ins = {dout, x};
    GetGradXOrYOut<ElementwiseType::kBinary, T>(dev_ctx, place, axis, ins, dout,
                                                dy, MulGradFunctor<T>());
  }
100
}
101 102 103 104

}  // namespace operators
}  // namespace paddle

Q
QI JUN 已提交
105
REGISTER_OP_CUDA_KERNEL(
W
Wu Yi 已提交
106 107 108 109
    elementwise_mul, ops::ElementwiseMulKernel<plat::CUDADeviceContext, float>,
    ops::ElementwiseMulKernel<plat::CUDADeviceContext, double>,
    ops::ElementwiseMulKernel<plat::CUDADeviceContext, int>,
    ops::ElementwiseMulKernel<plat::CUDADeviceContext, int64_t>,
W
will-jl944 已提交
110
    ops::ElementwiseMulKernel<plat::CUDADeviceContext, bool>,
111
    ops::ElementwiseMulKernel<plat::CUDADeviceContext, plat::float16>,
112 113
    ops::ElementwiseMulKernel<plat::CUDADeviceContext, plat::complex<float>>,
    ops::ElementwiseMulKernel<plat::CUDADeviceContext, plat::complex<double>>);
Q
QI JUN 已提交
114
REGISTER_OP_CUDA_KERNEL(
115
    elementwise_mul_grad,
W
Wu Yi 已提交
116 117 118 119
    ops::ElementwiseMulGradKernel<plat::CUDADeviceContext, float>,
    ops::ElementwiseMulGradKernel<plat::CUDADeviceContext, double>,
    ops::ElementwiseMulGradKernel<plat::CUDADeviceContext, int>,
    ops::ElementwiseMulGradKernel<plat::CUDADeviceContext, int64_t>,
W
will-jl944 已提交
120
    ops::ElementwiseMulGradKernel<plat::CUDADeviceContext, bool>,
121
    ops::ElementwiseMulGradKernel<plat::CUDADeviceContext, plat::float16>,
122 123 124 125
    ops::ElementwiseMulGradKernel<plat::CUDADeviceContext,
                                  plat::complex<float>>,
    ops::ElementwiseMulGradKernel<plat::CUDADeviceContext,
                                  plat::complex<double>>);
126 127 128 129 130
REGISTER_OP_CUDA_KERNEL(
    elementwise_mul_grad_grad,
    ops::ElementwiseMulDoubleGradKernel<plat::CUDADeviceContext, float>,
    ops::ElementwiseMulDoubleGradKernel<plat::CUDADeviceContext, double>,
    ops::ElementwiseMulDoubleGradKernel<plat::CUDADeviceContext, int>,
131
    ops::ElementwiseMulDoubleGradKernel<plat::CUDADeviceContext, int64_t>,
W
will-jl944 已提交
132
    ops::ElementwiseMulDoubleGradKernel<plat::CUDADeviceContext, bool>,
133
    ops::ElementwiseMulDoubleGradKernel<plat::CUDADeviceContext, plat::float16>,
134
    ops::ElementwiseMulDoubleGradKernel<plat::CUDADeviceContext,
135
                                        plat::complex<float>>,
136
    ops::ElementwiseMulDoubleGradKernel<plat::CUDADeviceContext,
137
                                        plat::complex<double>>);
138 139 140 141 142 143 144 145 146 147 148 149
REGISTER_OP_CUDA_KERNEL(
    elementwise_mul_triple_grad,
    ops::ElementwiseMulTripleGradKernel<plat::CUDADeviceContext, float>,
    ops::ElementwiseMulTripleGradKernel<plat::CUDADeviceContext, double>,
    ops::ElementwiseMulTripleGradKernel<plat::CUDADeviceContext, int>,
    ops::ElementwiseMulTripleGradKernel<plat::CUDADeviceContext, int64_t>,
    ops::ElementwiseMulTripleGradKernel<plat::CUDADeviceContext, bool>,
    ops::ElementwiseMulTripleGradKernel<plat::CUDADeviceContext, plat::float16>,
    ops::ElementwiseMulTripleGradKernel<plat::CUDADeviceContext,
                                        plat::complex<float>>,
    ops::ElementwiseMulTripleGradKernel<plat::CUDADeviceContext,
                                        plat::complex<double>>);