test_complex_matmul.py 4.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest
16

17
import numpy as np
18 19

import paddle
20 21 22 23 24 25
import paddle.fluid as fluid
import paddle.fluid.dygraph as dg


class TestComplexMatMulLayer(unittest.TestCase):
    def setUp(self):
26
        self._dtypes = ["float32", "float64"]
27 28 29 30
        self._places = [fluid.CPUPlace()]
        if fluid.core.is_compiled_with_cuda():
            self._places.append(fluid.CUDAPlace(0))

C
chentianyu03 已提交
31
    def compare_by_basic_api(self, x, y, np_result):
32 33 34 35
        for place in self._places:
            with dg.guard(place):
                x_var = dg.to_variable(x)
                y_var = dg.to_variable(y)
36
                result = paddle.matmul(x_var, y_var)
37
                pd_result = result.numpy()
38 39 40 41
                np.testing.assert_allclose(
                    pd_result,
                    np_result,
                    rtol=1e-05,
42 43 44 45 46 47
                    err_msg='\nplace: {}\npaddle diff result:\n {}\nnumpy diff result:\n {}\n'.format(
                        place,
                        pd_result[~np.isclose(pd_result, np_result)],
                        np_result[~np.isclose(pd_result, np_result)],
                    ),
                )
48

C
chentianyu03 已提交
49
    def compare_op_by_basic_api(self, x, y, np_result):
50 51 52 53 54
        for place in self._places:
            with dg.guard(place):
                x_var = dg.to_variable(x)
                y_var = dg.to_variable(y)
                result = x_var.matmul(y_var)
55
                pd_result = result.numpy()
56 57 58 59
                np.testing.assert_allclose(
                    pd_result,
                    np_result,
                    rtol=1e-05,
60 61 62 63 64 65
                    err_msg='\nplace: {}\npaddle diff result:\n {}\nnumpy diff result:\n {}\n'.format(
                        place,
                        pd_result[~np.isclose(pd_result, np_result)],
                        np_result[~np.isclose(pd_result, np_result)],
                    ),
                )
66

67
    def test_complex_xy(self):
68
        for dtype in self._dtypes:
69 70 71 72 73 74
            x = np.random.random((2, 3, 4, 5)).astype(
                dtype
            ) + 1j * np.random.random((2, 3, 4, 5)).astype(dtype)
            y = np.random.random((2, 3, 5, 4)).astype(
                dtype
            ) + 1j * np.random.random((2, 3, 5, 4)).astype(dtype)
75

76
            np_result = np.matmul(x, y)
77

78 79 80 81 82
            self.compare_by_basic_api(x, y, np_result)
            self.compare_op_by_basic_api(x, y, np_result)

    def test_complex_x_real_y(self):
        for dtype in self._dtypes:
83 84 85
            x = np.random.random((2, 3, 4, 5)).astype(
                dtype
            ) + 1j * np.random.random((2, 3, 4, 5)).astype(dtype)
86 87 88 89 90 91 92 93 94 95 96
            y = np.random.random((2, 3, 5, 4)).astype(dtype)

            np_result = np.matmul(x, y)

            # float -> complex type promotion
            self.compare_by_basic_api(x, y, np_result)
            self.compare_op_by_basic_api(x, y, np_result)

    def test_real_x_complex_y(self):
        for dtype in self._dtypes:
            x = np.random.random((2, 3, 4, 5)).astype(dtype)
97 98 99
            y = np.random.random((2, 3, 5, 4)).astype(
                dtype
            ) + 1j * np.random.random((2, 3, 5, 4)).astype(dtype)
100 101 102 103 104 105 106 107 108 109

            np_result = np.matmul(x, y)

            # float -> complex type promotion
            self.compare_by_basic_api(x, y, np_result)
            self.compare_op_by_basic_api(x, y, np_result)

    # for coverage
    def test_complex_xy_gemv(self):
        for dtype in self._dtypes:
110 111 112 113 114 115
            x = np.random.random((2, 1, 100)).astype(
                dtype
            ) + 1j * np.random.random((2, 1, 100)).astype(dtype)
            y = np.random.random((100)).astype(dtype) + 1j * np.random.random(
                (100)
            ).astype(dtype)
116 117 118 119 120 121 122 123 124

            np_result = np.matmul(x, y)

            self.compare_by_basic_api(x, y, np_result)
            self.compare_op_by_basic_api(x, y, np_result)

    # for coverage
    def test_complex_xy_gemm(self):
        for dtype in self._dtypes:
125 126 127 128 129 130
            x = np.random.random((1, 2, 50)).astype(
                dtype
            ) + 1j * np.random.random((1, 2, 50)).astype(dtype)
            y = np.random.random((1, 50, 2)).astype(
                dtype
            ) + 1j * np.random.random((1, 50, 2)).astype(dtype)
131 132 133 134 135

            np_result = np.matmul(x, y)

            self.compare_by_basic_api(x, y, np_result)
            self.compare_op_by_basic_api(x, y, np_result)
136

137 138 139

if __name__ == '__main__':
    unittest.main()