test_complex_matmul.py 5.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest
import paddle
import numpy as np
import paddle.fluid as fluid
import paddle.fluid.dygraph as dg
20
from paddle.fluid.framework import _test_eager_guard
21 22 23 24


class TestComplexMatMulLayer(unittest.TestCase):
    def setUp(self):
25
        self._dtypes = ["float32", "float64"]
26 27 28 29
        self._places = [fluid.CPUPlace()]
        if fluid.core.is_compiled_with_cuda():
            self._places.append(fluid.CUDAPlace(0))

C
chentianyu03 已提交
30
    def compare_by_basic_api(self, x, y, np_result):
31 32 33 34
        for place in self._places:
            with dg.guard(place):
                x_var = dg.to_variable(x)
                y_var = dg.to_variable(y)
35
                result = paddle.matmul(x_var, y_var)
36
                pd_result = result.numpy()
37 38 39 40
                np.testing.assert_allclose(
                    pd_result,
                    np_result,
                    rtol=1e-05,
41 42 43 44 45 46
                    err_msg='\nplace: {}\npaddle diff result:\n {}\nnumpy diff result:\n {}\n'.format(
                        place,
                        pd_result[~np.isclose(pd_result, np_result)],
                        np_result[~np.isclose(pd_result, np_result)],
                    ),
                )
47

C
chentianyu03 已提交
48
    def compare_op_by_basic_api(self, x, y, np_result):
49 50 51 52 53
        for place in self._places:
            with dg.guard(place):
                x_var = dg.to_variable(x)
                y_var = dg.to_variable(y)
                result = x_var.matmul(y_var)
54
                pd_result = result.numpy()
55 56 57 58
                np.testing.assert_allclose(
                    pd_result,
                    np_result,
                    rtol=1e-05,
59 60 61 62 63 64
                    err_msg='\nplace: {}\npaddle diff result:\n {}\nnumpy diff result:\n {}\n'.format(
                        place,
                        pd_result[~np.isclose(pd_result, np_result)],
                        np_result[~np.isclose(pd_result, np_result)],
                    ),
                )
65

66
    def test_complex_xy(self):
67
        for dtype in self._dtypes:
68 69 70 71 72 73
            x = np.random.random((2, 3, 4, 5)).astype(
                dtype
            ) + 1j * np.random.random((2, 3, 4, 5)).astype(dtype)
            y = np.random.random((2, 3, 5, 4)).astype(
                dtype
            ) + 1j * np.random.random((2, 3, 5, 4)).astype(dtype)
74

75
            np_result = np.matmul(x, y)
76

77 78 79 80 81
            self.compare_by_basic_api(x, y, np_result)
            self.compare_op_by_basic_api(x, y, np_result)

    def test_complex_x_real_y(self):
        for dtype in self._dtypes:
82 83 84
            x = np.random.random((2, 3, 4, 5)).astype(
                dtype
            ) + 1j * np.random.random((2, 3, 4, 5)).astype(dtype)
85 86 87 88 89 90 91 92 93 94 95
            y = np.random.random((2, 3, 5, 4)).astype(dtype)

            np_result = np.matmul(x, y)

            # float -> complex type promotion
            self.compare_by_basic_api(x, y, np_result)
            self.compare_op_by_basic_api(x, y, np_result)

    def test_real_x_complex_y(self):
        for dtype in self._dtypes:
            x = np.random.random((2, 3, 4, 5)).astype(dtype)
96 97 98
            y = np.random.random((2, 3, 5, 4)).astype(
                dtype
            ) + 1j * np.random.random((2, 3, 5, 4)).astype(dtype)
99 100 101 102 103 104 105 106 107 108

            np_result = np.matmul(x, y)

            # float -> complex type promotion
            self.compare_by_basic_api(x, y, np_result)
            self.compare_op_by_basic_api(x, y, np_result)

    # for coverage
    def test_complex_xy_gemv(self):
        for dtype in self._dtypes:
109 110 111 112 113 114
            x = np.random.random((2, 1, 100)).astype(
                dtype
            ) + 1j * np.random.random((2, 1, 100)).astype(dtype)
            y = np.random.random((100)).astype(dtype) + 1j * np.random.random(
                (100)
            ).astype(dtype)
115 116 117 118 119 120 121 122 123

            np_result = np.matmul(x, y)

            self.compare_by_basic_api(x, y, np_result)
            self.compare_op_by_basic_api(x, y, np_result)

    # for coverage
    def test_complex_xy_gemm(self):
        for dtype in self._dtypes:
124 125 126 127 128 129
            x = np.random.random((1, 2, 50)).astype(
                dtype
            ) + 1j * np.random.random((1, 2, 50)).astype(dtype)
            y = np.random.random((1, 50, 2)).astype(
                dtype
            ) + 1j * np.random.random((1, 50, 2)).astype(dtype)
130 131 132 133 134

            np_result = np.matmul(x, y)

            self.compare_by_basic_api(x, y, np_result)
            self.compare_op_by_basic_api(x, y, np_result)
135

136 137 138 139 140 141 142 143
    def test_eager(self):
        with _test_eager_guard():
            self.test_complex_xy_gemm()
            self.test_complex_xy_gemv()
            self.test_real_x_complex_y()
            self.test_complex_x_real_y()
            self.test_complex_xy()

144 145 146

if __name__ == '__main__':
    unittest.main()