role_maker.py 42.1 KB
Newer Older
D
dongdaxiang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
#   Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
X
xujiaqi01 已提交
14
"""Defination of Role Makers."""
D
dongdaxiang 已提交
15

T
tangwei12 已提交
16
from __future__ import print_function
17
from multiprocessing import Process, Manager
18
import paddle.fluid as fluid
X
xujiaqi01 已提交
19
import os
20
import time
21

T
tangwei12 已提交
22
__all__ = [
23
    'Role', 'RoleMakerBase', 'MPISymetricRoleMaker', 'UserDefinedRoleMaker',
X
xujiaqi01 已提交
24
    'UserDefinedCollectiveRoleMaker', 'PaddleCloudRoleMaker', 'GeneralRoleMaker'
T
tangwei12 已提交
25 26
]

27

T
tangwei12 已提交
28 29
class Role:
    WORKER = 1
30
    SERVER = 2
T
Thunderbrook 已提交
31
    XPU = 3
32

D
dongdaxiang 已提交
33

X
xujiaqi01 已提交
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68
class MockBarrier(object):
    """
    MockBarrier is a empty impletation for barrier
    mock as a real barrier for never-barrier in a specific scenario
    """

    def barrier(self):
        """
        dummy barrier, do nothing
        """
        pass

    def barrier_all(self):
        """
        dummy all barrier, do nothing
        """
        pass

    def all_reduce(self, obj):
        """
        dummy all reduce, do nothing
        Args:
            obj(any): obj to do all reduce
        """
        return obj

    def all_gather(self, obj):
        """
        dummy all gather, do nothing
        Args:
            obj(any): obj to do all gather
        """
        return [obj]


D
dongdaxiang 已提交
69
class RoleMakerBase(object):
70 71 72 73 74 75 76
    """
    RoleMakerBase is a base class for assigning a role to current process
    in distributed training.
    A paddle developer can implement RoleMakerBase to design a role maker
    for worker or pserver assignment.
    """

D
dongdaxiang 已提交
77
    def __init__(self):
T
tangwei12 已提交
78 79
        self._worker_endpoints = []
        self._server_endpoints = []
D
dongdaxiang 已提交
80
        self._role_is_generated = False
T
tangwei12 已提交
81 82
        self._role = None
        self._current_id = -1
D
dongdaxiang 已提交
83

T
tangwei12 已提交
84
    def is_worker(self):
85 86 87
        """
        return is_worker() of current process
        """
D
dongdaxiang 已提交
88 89
        raise NotImplementedError("Please implement this method in child class")

T
tangwei12 已提交
90
    def is_server(self):
91 92 93
        """
        return is_server() of current process
        """
D
dongdaxiang 已提交
94 95
        raise NotImplementedError("Please implement this method in child class")

T
tangwei12 已提交
96
    def is_first_worker(self):
97
        """
T
tangwei12 已提交
98 99 100 101
        Check whether the node is the first instance of worker.
        Returns:
            bool: True if this is the first node of worker,
                  False if not.
102
        """
T
tangwei12 已提交
103
        raise NotImplementedError("Please implement this method in child class")
D
dongdaxiang 已提交
104

105 106 107 108 109 110 111 112 113
    def worker_num(self):
        """
        Get current total worker number.

        Returns:
            int: worker number
        """
        raise NotImplementedError("Please implement this method in child class")

114 115 116
    def role_id(self):
        return self.worker_index() if self.is_worker() else self.server_index()

T
tangwei12 已提交
117
    def worker_index(self):
118
        """
T
tangwei12 已提交
119 120 121 122
        Get current worker id.

        Returns:
            int: node id
123
        """
T
tangwei12 已提交
124
        raise NotImplementedError("Please implement this method in child class")
D
dongdaxiang 已提交
125

T
tangwei12 已提交
126
    def server_index(self):
127
        """
T
tangwei12 已提交
128 129 130 131
        Get current server id.

        Returns:
            int: node id
132
        """
T
tangwei12 已提交
133
        raise NotImplementedError("Please implement this method in child class")
D
dongdaxiang 已提交
134

T
tangwei12 已提交
135
    def get_trainer_endpoints(self):
136
        """
T
tangwei12 已提交
137
        return trainer endpoints
138
        """
T
tangwei12 已提交
139 140 141 142 143 144 145
        return self._worker_endpoints

    def get_pserver_endpoints(self):
        """
        return pserver endpoints
        """
        return self._server_endpoints
D
dongdaxiang 已提交
146

T
tangwei12 已提交
147 148 149 150 151
    def to_string(self):
        return "role: {}, current_id: {}, worker_endpoints: {}, server_endpoints: {}".format(
            self._role, self._current_id, self._worker_endpoints,
            self._server_endpoints)

X
xujiaqi01 已提交
152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188
    def all_gather(self, input):
        """
        all gather between trainers and pservers

        Args:
            input(int|float): input value

        Returns:
            return a list of values
        """
        print("warning: RoleMakerBase does not have all gather.")
        return None

    def all_reduce_worker(self, input, output, mode="sum"):
        """
        all reduce between trainers if current role is TRAINER,
        only support array of one dim.

        Args:
            input(list/numpy.array): array of one dim
            output(list/numpy.array): array of one dim
            mode(str): "sum" or "min" or "max"
        """
        print("warning: RoleMakerBase does not have all reduce worker.")

    def barrier_worker(self):
        """
        barrier between trainers if current role is TRAINER
        """
        print("warning: RoleMakerBase does not have barrier worker.")

    def barrier_all(self):
        """
        barrier between trainers if current role is PSERVER
        """
        print("warning: RoleMakerBase does not have barrier all.")

D
dongdaxiang 已提交
189 190

class MPIRoleMaker(RoleMakerBase):
191 192 193 194 195
    """
    MPIRoleMaker is a MPI-API based role maker which is a counter-part of K8SRoleMaker
    mpi4py will be used if a developer inherits MPIRoleMaker
    """

D
dongdaxiang 已提交
196
    def __init__(self):
X
xujiaqi01 已提交
197
        """Init."""
X
xujiaqi01 已提交
198
        super(MPIRoleMaker, self).__init__()
D
dongdaxiang 已提交
199 200
        from mpi4py import MPI
        self.MPI = MPI
T
tangwei12 已提交
201 202
        self._comm = MPI.COMM_WORLD
        self._node_type_comm = None
D
dongdaxiang 已提交
203
        self._ips = None
T
tangwei12 已提交
204
        self._ip = None
D
dongdaxiang 已提交
205

206
    def _get_rank(self):
X
xujiaqi01 已提交
207
        """Return rank."""
D
dongdaxiang 已提交
208 209
        self._rank = self._comm.Get_rank()
        return self._rank
D
dongdaxiang 已提交
210

211
    def _get_size(self):
X
xujiaqi01 已提交
212
        """Return size."""
D
dongdaxiang 已提交
213 214
        self._size = self._comm.Get_size()
        return self._size
D
dongdaxiang 已提交
215

216
    def _all_gather(self, obj):
217 218 219
        """
        all_gather(obj) will call MPI's allgather function
        """
X
xjqbest 已提交
220
        self._barrier_all()
D
dongdaxiang 已提交
221
        return self._comm.allgather(obj)
D
dongdaxiang 已提交
222

X
xjqbest 已提交
223 224 225 226
    def _worker_gather(self, obj):
        """
        worker_gather(obj) will call MPI's allgather function
        """
T
tangwei12 已提交
227
        if self.is_worker():
D
dongdaxiang 已提交
228 229
            self._node_type_comm.barrier()
            return self._node_type_comm.allgather(obj)
X
xjqbest 已提交
230 231
        return None

232
    def _barrier_all(self):
233 234 235
        """
        barrier_all() will call MPI's barrier_all function
        """
D
dongdaxiang 已提交
236
        self._comm.barrier()
D
dongdaxiang 已提交
237

T
tangwei12 已提交
238 239 240 241
    def _finalize(self):
        """
        finalize the current MPI instance.
        """
242
        self.MPI.Finalize()
T
tangwei12 已提交
243

244
    def _get_ips(self):
245 246 247
        """
        collect current distributed job's ip list
        """
T
tangwei12 已提交
248 249
        if not self._ips:
            self._ips = self._comm.allgather(self.get_local_ip())
D
dongdaxiang 已提交
250
        return self._ips
D
dongdaxiang 已提交
251

T
tangwei12 已提交
252
    def get_local_ip(self):
X
xujiaqi01 已提交
253
        """Return get local ip."""
T
tangwei12 已提交
254 255 256 257 258 259 260 261 262
        import socket
        self._ip = socket.gethostbyname(socket.gethostname())
        return self._ip

    def generate_role(self):
        """
        generate_role() should be called to identify current process's role
        """
        raise NotImplementedError("Please implement this method in child class")
D
dongdaxiang 已提交
263 264 265


class MPISymetricRoleMaker(MPIRoleMaker):
266 267 268 269 270 271
    """
    MPISymetricRoleMaker is designed for worker and server assignment
    under MPI. Typically, a worker and a server node will be appointed
    on each physical node. This role maker can be only used under MPI.
    """

D
dongdaxiang 已提交
272
    def __init__(self):
X
xujiaqi01 已提交
273
        """Init."""
D
dongdaxiang 已提交
274
        super(MPISymetricRoleMaker, self).__init__()
D
dongdaxiang 已提交
275 276
        self._node_type = None
        self._proc_per_node = 2
G
guru4elephant 已提交
277
        self._pserver_rand_port = 0
D
dongdaxiang 已提交
278

279
    def _check_role_generation(self):
X
xujiaqi01 已提交
280
        """Check whether role has been generated."""
D
dongdaxiang 已提交
281
        if not self._role_is_generated:
T
tangwei12 已提交
282
            raise NameError("generate_role() should be called first")
283 284
        return True

X
xujiaqi01 已提交
285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334
    def all_gather(self, input):
        """
        all gather between trainers and pservers

        Args:
            input(int|float): input value

        Returns:
            return a list of values
        """
        if not self._role_is_generated:
            self.generate_role()
        return self._all_gather(input)

    def all_reduce_worker(self, input, output, mode="sum"):
        """
        all reduce between trainers if current role is TRAINER,
        only support array of one dim.

        Args:
            input(list/numpy.array): array of one dim
            output(list/numpy.array): array of one dim
            mode(str): "sum" or "min" or "max"
        """
        if not self._role_is_generated:
            self.generate_role()
        if not self.is_worker():
            print("warning: current role is not worker in all_reduce_worker")
            return
        self._all_reduce(input, output, mode)

    def barrier_worker(self):
        """
        barrier between trainers if current role is TRAINER
        """
        if not self._role_is_generated:
            self.generate_role()
        if self.is_worker():
            self._node_type_comm.barrier()
        else:
            print("warning: current role is not worker in barrier_worker")

    def barrier_all(self):
        """
        barrier between trainers if current role is PSERVER
        """
        if not self._role_is_generated:
            self.generate_role()
        self._comm.barrier()

T
tangwei12 已提交
335
    def is_first_worker(self):
336 337 338 339
        """
        return whether current process is the first worker assigned by role maker
        """
        if self._check_role_generation():
T
tangwei12 已提交
340
            return self.is_worker() and 0 == self.worker_index()
341
        return False
D
dongdaxiang 已提交
342

G
guru4elephant 已提交
343
    def get_pserver_endpoints(self):
X
xujiaqi01 已提交
344 345 346 347 348
        """
        get pserver endpoints
        Returns:
            endpoints(list): pserver endpoints
        """
G
guru4elephant 已提交
349 350 351 352 353 354 355 356 357 358 359 360 361
        if self._pserver_rand_port <= 0:
            import random
            random.seed(self._server_num())
            # port will be randomly generated from 60001 to 63999
            # random seed is server num so that all nodes will get
            # the same port
            self._pserver_rand_port = random.randint(60001, 64000)
        endpoints = [
            x + ":" + str(self._pserver_rand_port)
            for x in self._server_endpoints
        ]
        return endpoints

362 363 364
    def worker_num(self):
        return self._worker_num()

T
tangwei12 已提交
365
    def is_worker(self):
366 367 368 369
        """
        return whether current process is worker assigned by role maker
        """
        if self._check_role_generation():
D
dongdaxiang 已提交
370
            return self._node_type == 1
371
        return False
D
dongdaxiang 已提交
372

T
tangwei12 已提交
373
    def is_server(self):
374 375 376 377
        """
        return whether current process is server assigned by role maker
        """
        if self._check_role_generation():
D
dongdaxiang 已提交
378
            return self._node_type == 0
379
        return False
D
dongdaxiang 已提交
380

381
    def _worker_num(self):
382 383 384 385
        """
        return the current number of worker
        """
        if self._check_role_generation():
386
            return self._get_size() / self._proc_per_node
387
        return 0
D
dongdaxiang 已提交
388

389
    def _server_num(self):
390 391 392 393
        """
        return the current number of server
        """
        if self._check_role_generation():
G
guru4elephant 已提交
394 395 396 397
            return self._get_size() / self._proc_per_node
        else:
            self.generate_role()
            return self._get_size() / self._proc_per_node
D
dongdaxiang 已提交
398

T
tangwei12 已提交
399
    def worker_index(self):
400 401 402 403
        """
        return the index of worker
        """
        if self._check_role_generation():
D
dongdaxiang 已提交
404
            return self._rank / self._proc_per_node
G
guru4elephant 已提交
405 406 407
        else:
            self.generate_role()
            return self._get_size() / 2
D
dongdaxiang 已提交
408

T
tangwei12 已提交
409
    def server_index(self):
410 411 412 413
        """
        return the index of server
        """
        if self._check_role_generation():
D
dongdaxiang 已提交
414
            return self._rank / self._proc_per_node
G
guru4elephant 已提交
415 416 417
        else:
            self.generate_role()
            return self._get_size() / self._proc_per_node
D
dongdaxiang 已提交
418

X
xujiaqi01 已提交
419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440
    def _all_reduce(self, input, output, mode="sum"):
        """
        all reduce between trainers if current role is TRAINER,
        only support array of one dim.

        Args:
            input(list/numpy.array): array of one dim
            output(list/numpy.array): array of one dim
            mode(str): "sum" or "min" or "max"
        """
        if not self._role_is_generated:
            self.generate_role()
        if mode == "sum":
            mode = self.MPI.SUM
        elif mode == "max":
            mode = self.MPI.MAX
        elif mode == "min":
            mode = self.MPI.MIN
        else:
            raise ValueError("unknown mode: %s" % mode)
        self._node_type_comm.Allreduce(input, output, op=mode)

441
    def _barrier_worker(self):
442 443 444 445
        """
        barrier all workers in current distributed job
        """
        if self._check_role_generation():
T
tangwei12 已提交
446
            if self.is_worker():
D
dongdaxiang 已提交
447
                self._node_type_comm.barrier()
G
guru4elephant 已提交
448 449
        else:
            raise Exception("You should check role generation first")
D
dongdaxiang 已提交
450

451
    def _barrier_server(self):
452 453 454 455
        """
        barrier all servers in current distributed job
        """
        if self._check_role_generation():
T
tangwei12 已提交
456
            if self.is_server():
D
dongdaxiang 已提交
457
                self._node_type_comm.barrier()
G
guru4elephant 已提交
458 459
        else:
            raise Exception("You should check role generation first")
D
dongdaxiang 已提交
460

T
tangwei12 已提交
461
    def generate_role(self):
462 463 464
        """
        generate currently process's role
        """
D
dongdaxiang 已提交
465
        if not self._role_is_generated:
466
            # TODO(guru4elephant): only allow to be called once
467 468
            self._worker_endpoints = self._get_ips()[1::2]
            self._server_endpoints = self._get_ips()[::2]
469

D
dongdaxiang 已提交
470 471
            if 0 == self._get_rank() % self._proc_per_node % 2:
                self._node_type = 0
472
            else:
D
dongdaxiang 已提交
473 474 475
                self._node_type = 1
            self._node_type_comm = self._comm.Split(self._node_type)
            self._role_is_generated = True
G
guru4elephant 已提交
476 477
        else:
            raise Exception("You should check role generation first")
478 479


480
class PaddleCloudRoleMaker(RoleMakerBase):
X
xujiaqi01 已提交
481 482 483 484 485
    """
    role maker for paddle cloud,
    base class is RoleMakerBase
    """

486
    def __init__(self, is_collective=False):
487
        super(PaddleCloudRoleMaker, self).__init__()
488
        self._role_is_generated = False
489
        self._is_collective = is_collective
490 491

    def generate_role(self):
X
xujiaqi01 已提交
492
        """Generate role."""
493
        if not self._role_is_generated:
494
            if not self._is_collective:
T
tangwei12 已提交
495
                try:
C
Chengmo 已提交
496 497 498 499
                    # Environment variable PADDLE_PSERVERS_IP_PORT_LIST must be set
                    # format: string(ip:port), eg. 127.0.0.1:6001
                    eplist = os.environ["PADDLE_PSERVERS_IP_PORT_LIST"].split(
                        ",")
T
tangwei12 已提交
500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516
                    # note that, we usually assign the same port to different ips
                    # if we run parameter server training in local mode
                    # port should be different in environment variables

                    trainers_num = int(os.environ["PADDLE_TRAINERS_NUM"])
                    training_role = os.environ["TRAINING_ROLE"]

                    if training_role not in ["TRAINER", "PSERVER"]:
                        raise ValueError(
                            "TRAINING_ROLE must be PSERVER or TRAINER")

                    if training_role == "TRAINER":
                        role = Role.WORKER
                        current_id = int(os.environ["PADDLE_TRAINER_ID"])
                    elif training_role == "PSERVER":
                        role = Role.SERVER
                        cur_ip = os.environ["POD_IP"]
C
Chengmo 已提交
517 518 519
                        curr_port = os.environ["PADDLE_PORT"]
                        curr_endpoint = ":".join([cur_ip, curr_port])
                        current_id = eplist.index(curr_endpoint)
T
tangwei12 已提交
520 521 522 523 524 525 526 527 528 529 530 531
                    else:
                        raise ValueError(
                            "TRAINING_ROLE must be PSERVER or TRAINER")
                except ValueError as ve:
                    raise ValueError(
                        "something wrong with PaddleCloud, please check environment"
                    )

                self._trainers_num = trainers_num
                self._server_endpoints = eplist
                self._role = role
                self._current_id = current_id
532
            else:
533 534 535 536 537 538
                self._current_id = int(os.getenv("PADDLE_TRAINER_ID", "0"))
                self._training_role = os.getenv("PADDLE_TRAINING_ROLE",
                                                "TRAINER")
                assert (self._training_role == "TRAINER")
                self._worker_endpoints = os.getenv("PADDLE_TRAINER_ENDPOINTS")
                self._current_endpoint = os.getenv("PADDLE_CURRENT_ENDPOINT")
539 540 541 542
                assert self._worker_endpoints is not None, "can't find PADDLE_TRAINER_ENDPOINTS"
                self._worker_endpoints = self._worker_endpoints.split(",")
                self._trainers_num = len(self._worker_endpoints)

543 544
            self._role_is_generated = True

545 546 547 548 549
    def get_pserver_endpoints(self):
        if not self._role_is_generated:
            self.generate_role()
        return self._server_endpoints

550 551 552
    def is_worker(self):
        if not self._role_is_generated:
            self.generate_role()
553 554 555
        return self._role == Role.WORKER

    def is_server(self):
556 557
        if not self._role_is_generated:
            self.generate_role()
558 559 560
        return self._role == Role.SERVER

    def is_first_worker(self):
561 562
        if not self._role_is_generated:
            self.generate_role()
563 564 565
        return self._role == Role.WORKER and self._current_id == 0

    def worker_index(self):
566 567
        if not self._role_is_generated:
            self.generate_role()
568 569 570
        return self._current_id

    def server_index(self):
571 572
        if not self._role_is_generated:
            self.generate_role()
573 574 575
        return self._current_id

    def worker_num(self):
576 577
        if not self._role_is_generated:
            self.generate_role()
578
        return self._trainers_num
579 580


X
xujiaqi01 已提交
581 582 583
class GeneralRoleMaker(RoleMakerBase):
    """
    This role maker is for general use, you can set os.environ to customize:
T
tianshuo78520a 已提交
584 585
        PADDLE_PSERVERS_IP_PORT_LIST : all pservers' ip:port, separated by ','
        PADDLE_TRAINER_ENDPOINTS     : all trainers' ip:port, separated by ','
X
xujiaqi01 已提交
586 587 588 589 590 591 592 593 594 595 596 597
        TRAINING_ROLE                : TRAINER or PSERVER
        PADDLE_TRAINER_ID            : current trainer id (only for trainer),
                                       it is index in PADDLE_TRAINER_ENDPOINTS
        PADDLE_PSERVER_ID            : current pserver id (only for pserver)
                                       it is index in PADDLE_PSERVERS_IP_PORT_LIST
    """

    def __init__(self, **kwargs):
        super(RoleMakerBase, self).__init__()
        self._role_is_generated = False
        self._hdfs_name = kwargs.get("hdfs_name", "")
        self._hdfs_ugi = kwargs.get("hdfs_ugi", "")
598 599 600 601 602 603 604 605 606 607 608 609 610 611 612
        self._hdfs_path = kwargs.get("path", "").rstrip("/")
        self._init_timeout_seconds = kwargs.get("init_timeout_seconds", 3600)
        self._run_timeout_seconds = kwargs.get("run_timeout_seconds", 9999999)
        ip_port = kwargs.get("http_ip_port", "")
        self._http_ip_port = []
        self._http_server = None
        # if ip_port is not empty, it will use http instead of hdfs
        if ip_port != "":
            self._http_ip_port = ip_port.split(":")
            # it's for communication between processes
            self._manager = Manager()
            # global dict to store status
            self._http_server_d = self._manager.dict()
            # set running status of http server
            self._http_server_d["running"] = False
X
xujiaqi01 已提交
613 614 615 616 617 618 619 620 621 622 623 624 625 626 627
        self._iface = self.__get_default_iface()
        # this environment variable can be empty
        self._prefix = os.getenv("SYS_JOB_ID", "")

    def generate_role(self):
        """
        generate role for general role maker
        """
        if not self._role_is_generated:
            eplist = os.environ["PADDLE_PSERVERS_IP_PORT_LIST"].split(",")
            training_role = os.environ["TRAINING_ROLE"]
            worker_endpoints = os.environ["PADDLE_TRAINER_ENDPOINTS"].split(",")
            trainers_num = len(worker_endpoints)
            if training_role not in ["TRAINER", "PSERVER"]:
                raise ValueError("TRAINING_ROLE must be PSERVER or TRAINER")
X
xujiaqi01 已提交
628 629 630 631
            self._is_barrier_all = 1
            if "PADDLE_IS_BARRIER_ALL_ROLE" in os.environ:
                self._is_barrier_all = int(os.environ[
                    "PADDLE_IS_BARRIER_ALL_ROLE"])
X
xujiaqi01 已提交
632 633 634
            if training_role == "TRAINER":
                role = Role.WORKER
                current_id = int(os.environ["PADDLE_TRAINER_ID"])
635 636 637 638 639 640 641 642 643 644 645 646 647 648 649
                if current_id == 0 and len(self._http_ip_port) != 0:
                    size_d = {
                        "trainer": len(worker_endpoints),
                        "pserver": len(eplist),
                        "all": len(worker_endpoints) + len(eplist)
                    }
                    # child process for http server
                    self._http_server = Process(
                        target=self.__start_kv_server,
                        args=(self._http_server_d, size_d))
                    self._http_server.daemon = True
                    # set running status to True
                    self._http_server_d["running"] = True
                    # start child process
                    self._http_server.start()
X
xujiaqi01 已提交
650 651
                self._node_type = 1
                self._cur_endpoint = worker_endpoints[current_id]
X
xujiaqi01 已提交
652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668
                if self._is_barrier_all:
                    gloo = fluid.core.Gloo()
                    gloo.set_rank(current_id)
                    gloo.set_size(len(worker_endpoints))
                    gloo.set_prefix(self._prefix)
                    gloo.set_iface(self._iface)
                    gloo.set_timeout_seconds(self._init_timeout_seconds,
                                             self._run_timeout_seconds)
                    if len(self._http_ip_port) != 0:
                        gloo.set_http_store(self._http_ip_port[0],
                                            int(self._http_ip_port[1]),
                                            "trainer")
                    else:
                        gloo.set_hdfs_store(self._hdfs_path + "/trainer",
                                            self._hdfs_name, self._hdfs_ugi)
                    gloo.init()
                    self._node_type_comm = gloo
669
                else:
X
xujiaqi01 已提交
670
                    self._all_comm = MockBarrier()
X
xujiaqi01 已提交
671 672 673 674 675 676 677 678 679 680 681 682 683
            elif training_role == "PSERVER":
                role = Role.SERVER
                if os.environ.get("PADDLE_PSERVER_ID") is not None:
                    current_id = int(os.environ["PADDLE_PSERVER_ID"])
                    cur_endpoint = eplist[current_id]
                else:
                    # this is for compatible with paddlecloud
                    cur_ip = os.environ["POD_IP"]
                    cur_port = os.environ["PADDLE_PORT"]
                    cur_endpoint = ":".join([cur_ip, cur_port])
                    current_id = eplist.index(cur_endpoint)
                self._node_type = 0
                self._cur_endpoint = cur_endpoint
684
                gloo = fluid.core.Gloo()
685 686 687 688 689 690 691 692 693 694 695 696 697
                gloo.set_rank(current_id)
                gloo.set_size(len(eplist))
                gloo.set_prefix(self._prefix)
                gloo.set_iface(self._iface)
                gloo.set_timeout_seconds(self._init_timeout_seconds,
                                         self._run_timeout_seconds)
                if len(self._http_ip_port) != 0:
                    gloo.set_http_store(self._http_ip_port[0],
                                        int(self._http_ip_port[1]), "pserver")
                else:
                    gloo.set_hdfs_store(self._hdfs_path + "/pserver",
                                        self._hdfs_name, self._hdfs_ugi)
                gloo.init()
X
xujiaqi01 已提交
698 699
                self._node_type_comm = gloo

700
            gloo = fluid.core.Gloo()
X
xujiaqi01 已提交
701
            all_list = worker_endpoints + eplist
702 703 704 705 706 707 708 709 710 711 712 713 714
            gloo.set_rank(all_list.index(self._cur_endpoint))
            gloo.set_size(len(all_list))
            gloo.set_prefix(self._prefix)
            gloo.set_iface(self._iface)
            gloo.set_timeout_seconds(self._init_timeout_seconds,
                                     self._run_timeout_seconds)
            if len(self._http_ip_port) != 0:
                gloo.set_http_store(self._http_ip_port[0],
                                    int(self._http_ip_port[1]), "all")
            else:
                gloo.set_hdfs_store(self._hdfs_path + "/all", self._hdfs_name,
                                    self._hdfs_ugi)
            gloo.init()
X
xujiaqi01 已提交
715 716 717 718 719 720 721 722
            self._all_comm = gloo
            self._trainers_num = trainers_num
            self._server_endpoints = eplist
            self._role = role
            self._current_id = current_id
            self._rank = all_list.index(self._cur_endpoint)
            self._size = len(all_list)
            self._worker_endpoints = worker_endpoints
723 724 725 726 727
            if self._http_server is not None:
                # set running status to False
                self._http_server_d["running"] = False
                # wait until child process exits
                self._http_server.join()
X
xujiaqi01 已提交
728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979
            self._role_is_generated = True

    def all_gather(self, input):
        """
        all gather between trainers and pservers

        Args:
            input(int|float): input value

        Returns:
            return a list of values
        """
        return self._all_gather(input)

    def all_reduce_worker(self, input, output, mode="sum"):
        """
        all reduce between trainers if current role is TRAINER,
        only support array of one dim.

        Args:
            input(list/numpy.array): array of one dim
            output(list/numpy.array): array of one dim
            mode(str): "sum" or "min" or "max"
        """
        if not self.is_worker():
            return
        self._all_reduce(input, output, mode)

    def barrier_worker(self):
        """
        barrier between trainers if current role is TRAINER
        """
        self._barrier_worker()

    def barrier_all(self):
        """
        barrier between trainers if current role is PSERVER
        """
        self._barrier_all()

    def get_local_endpoint(self):
        """
        get local endpoint of current process
        """
        if not self._role_is_generated:
            self.generate_role()
        return self._cur_endpoint

    def get_trainer_endpoints(self):
        """
        get endpoint of all trainers
        """
        if not self._role_is_generated:
            self.generate_role()
        return self._worker_endpoints

    def get_pserver_endpoints(self):
        """
        get endpoint of all pservers
        """
        if not self._role_is_generated:
            self.generate_role()
        return self._server_endpoints

    def is_worker(self):
        """
        whether current process is worker
        """
        if not self._role_is_generated:
            self.generate_role()
        return self._role == Role.WORKER

    def is_server(self):
        """
        whether current process is server
        """
        if not self._role_is_generated:
            self.generate_role()
        return self._role == Role.SERVER

    def is_first_worker(self):
        """
        whether current process is worker of rank 0
        """
        if not self._role_is_generated:
            self.generate_role()
        return self._role == Role.WORKER and self._current_id == 0

    def worker_index(self):
        """
        get index of current worker
        """
        if not self._role_is_generated:
            self.generate_role()
        return self._current_id

    def server_index(self):
        """
        get index of current server
        """
        if not self._role_is_generated:
            self.generate_role()
        return self._current_id

    def worker_num(self):
        """
        retrun the current number of worker
        """
        if not self._role_is_generated:
            self.generate_role()
        return self._worker_num()

    def server_num(self):
        """
        return the current number of server
        """
        if not self._role_is_generated:
            self.generate_role()
        return self._server_num()

    def _barrier_worker(self):
        """
        barrier all workers in current distributed job
        """
        if not self._role_is_generated:
            self.generate_role()
        if self.is_worker():
            self._node_type_comm.barrier()

    def _barrier_all(self):
        """
        barrier all workers and servers in current distributed job
        """
        if not self._role_is_generated:
            self.generate_role()
        self._all_comm.barrier()

    def _barrier_server(self):
        """
        barrier all servers in current distributed job
        """
        if not self._role_is_generated:
            self.generate_role()
        if self.is_server():
            self._node_type_comm.barrier()

    def _worker_num(self):
        """
        return the current number of worker
        """
        if not self._role_is_generated:
            self.generate_role()
        return self._trainers_num

    def _server_num(self):
        """
        return the current number of server
        """
        if not self._role_is_generated:
            self.generate_role()
        return len(self._server_endpoints)

    def _finalize(self):
        """Default do nothing."""
        pass

    def _all_reduce(self, input, output, mode="sum"):
        """
        all reduce between all workers

        Args:
            input(list|numpy.array): array of one dim
            output(list|numpy.array): array of one dim
            mode(str): "sum" or "min" or "max"
        """
        if not self._role_is_generated:
            self.generate_role()
        input_list = [i for i in input]
        ans = self._node_type_comm.all_reduce(input_list, mode)
        for i in range(len(ans)):
            output[i] = ans[i]

    def _all_gather(self, obj):
        """
        gather between all workers and pservers
        """
        if not self._role_is_generated:
            self.generate_role()
        self._barrier_all()
        return self._all_comm.all_gather(obj)

    def _worker_gather(self, obj):
        """
        gather between all workers
        """
        if not self._role_is_generated:
            self.generate_role()
        if not self.is_worker():
            return None
        self._barrier_worker()
        return self._node_type_comm.all_gather(obj)

    def _get_rank(self):
        """
        get current rank in all workers and pservers
        """
        if not self._role_is_generated:
            self.generate_role()
        return self._rank

    def _get_size(self):
        """
        get total num of all workers and pservers
        """
        if not self._role_is_generated:
            self.generate_role()
        return self._size

    def __get_default_iface(self):
        """
        get default physical interface
        """
        default1 = self.__get_default_iface_from_gateway()
        default2 = self.__get_default_iface_from_interfaces()
        return default2 if default1 == "lo" else default1

    def __get_default_iface_from_gateway(self):
        """
        get default physical interface
        """
        import netifaces
        gateways = netifaces.gateways()
        if gateways.get(netifaces.AF_INET) != None:
            gateway = gateways[netifaces.AF_INET]
            if len(gateway) > 0 and len(gateway[0]) > 1:
                return gateway[0][1]
        return "lo"

    def __get_default_iface_from_interfaces(self):
        """
        get default physical interface
        """
        import netifaces
        for intf_name in netifaces.interfaces():
            addresses = netifaces.ifaddresses(intf_name)
            if netifaces.AF_INET in addresses:
                ipv4_addresses = addresses[netifaces.AF_INET]
                for ipv4_address in ipv4_addresses:
                    if 'broadcast' in ipv4_address:
                        return intf_name
        return "lo"

980 981 982 983 984
    def __start_kv_server(self, http_server_d, size_d):
        from paddle.fluid.incubate.fleet.utils.http_server import KVServer
        http_server = KVServer(int(self._http_ip_port[1]), size_d)
        http_server.start()
        wait_seconds = 5
985
        while http_server_d.get("running", False):
986 987 988
            time.sleep(wait_seconds)
        http_server.stop()

X
xujiaqi01 已提交
989

T
Thunderbrook 已提交
990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130
class HeterRoleMaker(GeneralRoleMaker):
    """
    This role maker is for general use, you can set os.environ to customize:
        PADDLE_PSERVERS_IP_PORT_LIST : all pservers' ip:port, separated by ','
        PADDLE_TRAINER_ENDPOINTS     : all trainers' ip:port, separated by ','
        TRAINING_ROLE                : TRAINER or PSERVER
        PADDLE_TRAINER_ID            : current trainer id (only for trainer),
                                       it is index in PADDLE_TRAINER_ENDPOINTS
        PADDLE_PSERVER_ID            : current pserver id (only for pserver)
                                       it is index in PADDLE_PSERVERS_IP_PORT_LIST
    """

    def generate_role(self):
        """
        generate role for general role maker
        """
        if not self._role_is_generated:
            eplist = os.environ["PADDLE_PSERVERS_IP_PORT_LIST"].split(",")
            training_role = os.environ["TRAINING_ROLE"]
            worker_endpoints = os.environ["PADDLE_TRAINER_ENDPOINTS"].split(",")
            trainers_num = len(worker_endpoints)
            xpu_endpoints = os.environ["PADDLE_XPU_ENDPOINTS"].split(",")
            xpu_num = len(xpu_endpoints)
            if training_role not in ["TRAINER", "PSERVER", "XPU"]:
                raise ValueError(
                    "TRAINING_ROLE must be PSERVER or TRAINER or XPU")
            if training_role == "TRAINER":
                role = Role.WORKER
                current_id = int(os.environ["PADDLE_TRAINER_ID"])
                self._node_type = 1
                self._cur_endpoint = worker_endpoints[current_id]
                gloo = fluid.core.Gloo()
                gloo.init(current_id,
                          len(worker_endpoints),
                          self._hdfs_path.rstrip("/") + "/trainer",
                          self._hdfs_name, self._hdfs_ugi, self._iface,
                          self._prefix)
                self._node_type_comm = gloo
            elif training_role == "XPU":
                role = Role.XPU
                current_id = int(os.environ["PADDLE_XPU_ID"])
                self._node_type = 2
                self._cur_endpoint = xpu_endpoints[current_id]
                gloo = fluid.core.Gloo()
                gloo.init(current_id,
                          len(xpu_endpoints),
                          self._hdfs_path.rstrip("/") + "/xpu", self._hdfs_name,
                          self._hdfs_ugi, self._iface, self._prefix)
                self._node_type_comm = gloo
            elif training_role == "PSERVER":
                role = Role.SERVER
                if os.environ.get("PADDLE_PSERVER_ID") is not None:
                    current_id = int(os.environ["PADDLE_PSERVER_ID"])
                    cur_endpoint = eplist[current_id]
                else:
                    # this is for compatible with paddlecloud
                    cur_ip = os.environ["POD_IP"]
                    cur_port = os.environ["PADDLE_PORT"]
                    cur_endpoint = ":".join([cur_ip, cur_port])
                    current_id = eplist.index(cur_endpoint)
                self._node_type = 0
                self._cur_endpoint = cur_endpoint
                gloo = fluid.core.Gloo()
                gloo.init(current_id,
                          len(eplist),
                          self._hdfs_path.rstrip("/") + "/pserver",
                          self._hdfs_name, self._hdfs_ugi, self._iface,
                          self._prefix)
                self._node_type_comm = gloo

            if training_role == "TRAINER" or training_role == "XPU":
                gloo = fluid.core.Gloo()
                heter_list = worker_endpoints + xpu_endpoints
                gloo.init(
                    heter_list.index(self._cur_endpoint),
                    len(heter_list),
                    self._hdfs_path.rstrip("/") + "/heter", self._hdfs_name,
                    self._hdfs_ugi, self._iface, self._prefix)
                self._heter_comm = gloo

            gloo = fluid.core.Gloo()
            all_list = worker_endpoints + eplist + xpu_endpoints
            gloo.init(
                all_list.index(self._cur_endpoint),
                len(all_list),
                self._hdfs_path.rstrip("/") + "/all", self._hdfs_name,
                self._hdfs_ugi, self._iface, self._prefix)

            self._all_comm = gloo
            self._trainers_num = trainers_num
            self._server_endpoints = eplist
            self._role = role
            self._current_id = current_id
            self._rank = all_list.index(self._cur_endpoint)
            self._size = len(all_list)
            self._worker_endpoints = worker_endpoints
            self._xpu_endpoints = xpu_endpoints
            self._role_is_generated = True

    def is_xpu(self):
        """
        whether current process is server
        """
        if not self._role_is_generated:
            self.generate_role()
        return self._role == Role.XPU

    def is_first_xpu(self):
        """
        whether current process is worker of rank 0
        """
        if not self._role_is_generated:
            self.generate_role()
        return self._role == Role.XPU and self._current_id == 0

    def _barrier_xpu(self):
        """
        barrier all workers in current distributed job
        """
        if not self._role_is_generated:
            self.generate_role()
        if self.is_xpu():
            self._node_type_comm.barrier()

    def _barrier_heter(self):
        """
        barrier all workers in current distributed job
        """
        if not self._role_is_generated:
            self.generate_role()
        if self.is_xpu() or self.is_worker:
            self._heter_comm.barrier()

    def xpu_num(self):
        """
        """
        if not self._role_is_generated:
            self.generate_role()
        return len(self._xpu_endpoints)


1131
class UserDefinedRoleMaker(RoleMakerBase):
X
xujiaqi01 已提交
1132 1133 1134 1135 1136 1137
    """
    UserDefinedRoleMaker is designed for worker and server assignment
    under manual. Typically, a worker and a server node will be appointed
    on each physical node, It can be assign by user.
    """

1138 1139
    def __init__(self,
                 current_id=0,
T
tangwei12 已提交
1140 1141 1142
                 role=Role.WORKER,
                 worker_num=0,
                 server_endpoints=None):
1143 1144
        super(UserDefinedRoleMaker, self).__init__()

1145 1146 1147 1148 1149 1150 1151
        if not isinstance(server_endpoints, list):
            raise TypeError("server_endpoints must be as string list")
        elif len(server_endpoints) <= 0:
            raise ValueError(
                "the length of server_endpoints list must be greater than 0")
        elif len(server_endpoints) != len(set(server_endpoints)):
            raise ValueError("server_endpoints can't have duplicate elements")
1152
        else:
1153 1154 1155 1156 1157 1158
            for server_endpoint in server_endpoints:
                if not isinstance(server_endpoint, str):
                    raise TypeError(
                        "every element in server_endpoints list must be as string"
                    )
            self._server_endpoints = server_endpoints
1159

T
tangwei12 已提交
1160
        if role != Role.WORKER and role != Role.SERVER:
1161 1162 1163 1164
            raise TypeError("role must be as Role")
        else:
            self._role = role

1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177
        if not isinstance(current_id, int):
            raise TypeError("current_id must be as int")
        else:
            if current_id < 0:
                raise ValueError(
                    "current_id must be greater than or equal to 0")
            elif self._role == Role.SERVER and current_id >= len(
                    server_endpoints):
                raise ValueError(
                    "if role is Role.SERVER, current_id must be less than or equal to len(server_endpoints) - 1"
                )
            self._current_id = current_id

1178 1179 1180
        if not isinstance(worker_num, int):
            raise TypeError("worker_num must be as int")
        else:
1181 1182
            if worker_num <= 0:
                raise ValueError("worker_num must be greater than 0")
1183 1184
            self._worker_num = worker_num

1185 1186 1187
    def generate_role(self):
        self._role_is_generated = True

T
tangwei12 已提交
1188 1189 1190 1191 1192
    def is_worker(self):
        return self._role == Role.WORKER

    def is_server(self):
        return self._role == Role.SERVER
1193

T
tangwei12 已提交
1194 1195
    def is_first_worker(self):
        return self._role == Role.WORKER and self._current_id == 0
1196

T
tangwei12 已提交
1197 1198
    def worker_index(self):
        return self._current_id
1199

T
tangwei12 已提交
1200 1201
    def server_index(self):
        return self._current_id
1202 1203 1204

    def worker_num(self):
        return self._worker_num
1205 1206 1207


class UserDefinedCollectiveRoleMaker(RoleMakerBase):
X
xujiaqi01 已提交
1208 1209 1210 1211 1212
    """
    UserDefinedCollectiveRoleMaker is designed for worker assignment
    under manual for collective mode.
    """

1213 1214 1215
    def __init__(self, current_id=0, worker_endpoints=None):
        super(UserDefinedCollectiveRoleMaker, self).__init__()

1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230
        if not isinstance(worker_endpoints, list):
            raise TypeError("worker_endpoints must be as string list")
        elif len(worker_endpoints) <= 0:
            raise ValueError(
                "the length of worker_endpoints list must be greater than 0")
        elif len(worker_endpoints) != len(set(worker_endpoints)):
            raise ValueError("worker_endpoints can't have duplicate elements")
        else:
            for worker_endpoint in worker_endpoints:
                if not isinstance(worker_endpoint, str):
                    raise TypeError(
                        "every element in worker_endpoints list must be as string"
                    )
            self._worker_endpoints = worker_endpoints

1231 1232 1233 1234
        if not isinstance(current_id, int):
            raise TypeError("current_id must be as int")
        else:
            if current_id < 0:
1235 1236 1237 1238 1239 1240
                raise ValueError(
                    "current_id must be greater than or equal to 0")
            elif current_id >= len(worker_endpoints):
                raise ValueError(
                    "current_id must be less than or equal to len(worker_endpoints) - 1"
                )
1241 1242 1243 1244
            self._current_id = current_id

        self._worker_num = len(self._worker_endpoints)

1245 1246 1247
    def generate_role(self):
        self._role_is_generated = True

1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258
    def is_worker(self):
        return True

    def is_first_worker(self):
        return self._current_id == 0

    def worker_index(self):
        return self._current_id

    def worker_num(self):
        return self._worker_num