activation.py 22.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
# TODO: define activation functions of neural network
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34
from ...fluid.layers import brelu  #DEFINE_ALIAS
from ...fluid.layers import elu  #DEFINE_ALIAS
from ...fluid.layers import erf  #DEFINE_ALIAS
from ...fluid.layers import gelu  #DEFINE_ALIAS
from ...fluid.layers import hard_sigmoid  #DEFINE_ALIAS
from ...fluid.layers import hard_swish  #DEFINE_ALIAS
from ...fluid.layers import leaky_relu  #DEFINE_ALIAS
from ...fluid.layers import logsigmoid  #DEFINE_ALIAS
from ...fluid.layers import maxout  #DEFINE_ALIAS
from ...fluid.layers import relu6  #DEFINE_ALIAS
from ...fluid.layers import selu  #DEFINE_ALIAS
from ...fluid.layers import soft_relu  #DEFINE_ALIAS
from ...fluid.layers import softplus  #DEFINE_ALIAS
from ...fluid.layers import softshrink  #DEFINE_ALIAS
from ...fluid.layers import softsign  #DEFINE_ALIAS
from ...fluid.layers import swish  #DEFINE_ALIAS
from ...fluid.layers import tanh_shrink  #DEFINE_ALIAS
from ...fluid.layers import thresholded_relu  #DEFINE_ALIAS

35
__all__ = [
36 37 38 39
    'brelu',
    'elu',
    'erf',
    'gelu',
40
    'hardshrink',
41 42
    'hard_sigmoid',
    'hard_swish',
43
    'hsigmoid',
44 45 46 47
    'leaky_relu',
    'logsigmoid',
    'maxout',
    #       'prelu',
48
    'relu',
49 50
    'relu6',
    'selu',
51
    'sigmoid',
52 53 54 55 56 57 58 59
    'soft_relu',
    'softmax',
    'softplus',
    'softshrink',
    'softsign',
    'swish',
    'tanh_shrink',
    'thresholded_relu',
60 61
    'log_softmax'
]
62

63 64 65 66
import warnings
from ...fluid.layer_helper import LayerHelper
from ...fluid.framework import in_dygraph_mode, convert_np_dtype_to_dtype_
from ...fluid import core
67
from ...fluid.data_feeder import check_variable_and_dtype
68
import paddle
69

70

71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123
def hardshrink(x, threshold=0.5, name=None):
    """
    hard shrinkage activation

    .. math::

        hardshrink(x)=
            \left\{
            \begin{aligned}
            &x, & & if \ x > threshold \\
            &x, & & if \ x < -threshold \\
            &0, & & if \ others
            \end{aligned}
            \right.

    Args:
        x (Tensor): The input Tensor with data type float32, float64.
        threshold (float, optional): The value of threshold for hardthrink. Default is 0.5
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:

        .. code-block:: python

        import paddle
        import paddle.nn.functional as F
        import numpy as np

        paddle.disable_static()

        x = paddle.to_variable(np.array([-1, 0.3, 2.5]))
        out = F.hardshrink(x) # [-1., 0., 2.5]

    """
    if in_dygraph_mode():
        return core.ops.hard_shrink(x, 'threshold', threshold)

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'],
                             'hardshrink')
    helper = LayerHelper('hardshrink', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
    helper.append_op(
        type='hard_shrink',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold})
    return out


124 125 126 127 128 129 130 131 132
def hsigmoid(input,
             label,
             weight,
             bias,
             num_classes,
             path_table=None,
             path_code=None,
             is_sparse=False):
    """
H
hong 已提交
133 134
	:alias_main: paddle.nn.functional.hsigmoid
	:alias: paddle.nn.functional.hsigmoid,paddle.nn.functional.activation.hsigmoid
S
swtkiwi 已提交
135

136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244
    The hierarchical sigmoid organizes the classes into a complete binary tree to reduce the computational complexity
    and speed up the model training, especially the training of language model.
    Each leaf node of the complete binary tree represents a class(word) and each non-leaf node acts as a binary classifier.
    For each class(word), there's a unique path from root to itself, hsigmoid calculate the cost for each non-leaf node on
    the path, and sum them to get a total cost.
    Comparing to softmax, the OP can reduce the computational complexity from :math:`O(N)` to :math:`O(logN)`, where :math:`N`
    represents the number of classes or the size of word dict.

    The OP supports default tree and custom tree. For the default tree, you can refer to `Hierarchical Probabilistic Neural
    Network Language Model <http://www.iro.umontreal.ca/~lisa/pointeurs/hierarchical-nnlm-aistats05.pdf>`_. For the custom
    tree, you need to set :attr:`is_custom` to True, and do the following steps (take the language model as an example):

    1. Using a custom word dict to build a binary tree, each leaf node should be an word in the word dict.
    2. Creating a dict map word_id -> path that from the word to the root node, we call it path_table.
    3. Creating a dict map word_id -> code of path that from the word to the root node, we call it path_code.
       Code means the label of each binary classifier, 1 indicate true, 0 indicate false.
    4. Now, each word should has its path and code along the path, you can pass a batch of path and code related
       to the same batch of inputs.

    Parameters:
        input (Variable): A tensor with the shape [N, D], where N is the size of mini-batch,
            and D is the feature size. Its data type supports float32 and float64.
        label (Variable): A tensor contains the labels of training data. Its shape is [N, 1]
            and data type is int64.
        weight (Variable): A tensor with shape (num_classes - 1, D) if not using custom tree(path_code and path_table is None), or (num_classes, D) if using custom tree.
        bias (Variable): A tensor with shape (num_classes - 1, 1) if not using custom tree(path_code and path_table is None), or (num_classes, 1) if using custom tree.
        num_classes (int): The number of classes or the size of word dict, must be greater than 2.
            If the default tree is used (:attr:`is_custom` is set to False), :attr:`num_classes`
            should not be None. If the custom tree is used (:attr:`is_custom` is set to True),
            :attr:`num_classes` should be the number of non-leaf nodes, which indicates the num of
            classes using by the binary classifier.
        path_table (Variable, optional): A tensor that stores each batch of samples' path from leaf to root
            node, its shape is [N, L] and data type is int64, where L is the length of path. For each sample i,
            path_table[i] is a np.array like structure and each element in this array is the indexes in parent
            nodes' weight matrix. Default: None.
        path_code (Variable, optional): A tensor that stores each batch of samples' code of path from leaf
            to root node, its shape is [N, L] and data type is int64, which is the same as :attr:`path_table`.
            Each code of path is consisted with the code of nodes from leaf to root node. Default: None.
        is_sparse (bool, optional): Whether use sparse updating instead of dense updating, if it's True, the
            gradient of W and input will be sparse. Default: False.

    Returns:
        Variable: A tensor with the cost of hierarchical sigmoid, its shape is [N, 1] and data type is the same as :attr:`input`.

    Examples:

        .. code-block:: python

            from paddle import fluid, nn
            import paddle.fluid.dygraph as dg
            import paddle.nn.functional as F
            import numpy as np

            main = fluid.Program()
            start = fluid.Program()
            feature_size = 6
            num_classes = 8
            with fluid.unique_name.guard():
                with fluid.program_guard(main, start):
                    x = fluid.data("input", [-1, feature_size],
                                  dtype="float32")
                    label = fluid.data("labels", [-1, 1], dtype="int64")
                    w = fluid.data("weight", (num_classes -1, feature_size), dtype="float32")
                    b = fluid.data("bias", (num_classes -1, ), dtype="float32")
                    y = F.hsigmoid(x, label, w, b, num_classes)

            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run(start)
            feed_dict = {
                "input": np.random.randn(4, feature_size).astype(np.float32),
                "labels": np.random.randint(0, num_classes, (4, 1)).astype(np.int64),
                "weight": np.random.randn(num_classes - 1, feature_size).astype(np.float32),
                "bias": np.random.randn(num_classes - 1, ).astype(np.float32),
            }
            y_np, = exe.run(main, feed=feed_dict, fetch_list=[y])
            print(y_np.shape)

          # (4, 1)
    """

    attrs = {
        "num_classes": num_classes,
        "is_sparse": is_sparse,
        "remote_prefetch": is_sparse
    }

    inputs = {
        "X": input,
        "W": weight,
        "Bias": bias,
        "PathTable": path_table,
        "PathCode": path_code,
        "Label": label
    }

    helper = LayerHelper('hierarchical_sigmoid', **locals())
    dtype = helper.input_dtype()

    out = helper.create_variable_for_type_inference(dtype)
    pre_out = helper.create_variable_for_type_inference(dtype)
    outputs = {"Out": out, "PreOut": pre_out, "W_Out": weight}

    helper.append_op(
        type="hierarchical_sigmoid",
        inputs=inputs,
        outputs=outputs,
        attrs=attrs)
    return out
245 246 247 248


def relu(input, inplace=False, name=None):
    """
H
hong 已提交
249 250
	:alias_main: paddle.nn.functional.relu
	:alias: paddle.nn.functional.relu,paddle.nn.functional.activation.relu
S
swtkiwi 已提交
251

252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288
    ReLU Activation.

    .. math:

        out = max(x, 0)

    Parameters:
        input (Variable): The input variable. A multi-dimension Tensor with type float16, float32, or float64.
        inplace (bool, optional): If inplace is True, the input and output of ``ReLU`` are the same variable.
            Otherwise, the input and output of ``ReLU`` are different variables. Default: False. Note that if x is
            more than one OPs' input, inplace must be False.
        name (str, optional): The default value is None.  Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name` .

    Returns:
        Output of relu operator, a Tensor with shape same as input

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          import paddle.nn.functional as functional
          import numpy as np

          data = np.array([-2, 0, 1]).astype('float32')
          with fluid.dygraph.guard():
              data = fluid.dygraph.to_variable(data)
              res = functional.relu(data)  # [0, 0, 1]
    """

    if in_dygraph_mode():
        if inplace:
            warnings.warn(
                "Inplace on ReLU is not allowed and will be discarded in dygraph mode currently."
            )
        return core.ops.relu(input)

289 290
    check_variable_and_dtype(input, 'input', ['float16', 'float32', 'float64'],
                             'relu')
291

292
    helper = LayerHelper('relu', **locals())
293 294 295 296 297 298
    outs = input if inplace else helper.create_variable_for_type_inference(
        input.dtype)
    helper.append_op(type='relu', inputs={'X': [input]}, outputs={'Out': outs})
    return outs


299 300
def sigmoid(input, inplace=False, name=None):
    """
H
hong 已提交
301 302
	:alias_main: paddle.nn.functional.sigmoid
	:alias: paddle.nn.functional.sigmoid,paddle.nn.functional.activation.sigmoid
S
swtkiwi 已提交
303

304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350
    Sigmoid Activation.

    .. math:

        output = \frac{1}{1 + e^{-input}}
    
    Parameters:
        input (Variable): The input variable. A multi-dimension Tensor with type float16, float32, or float64.
        inplace (bool, optional): If inplace is True, the input and output are the same variable.
            Otherwise, the input and output of are different variables. Default: False. Note that if x is
            more than one OPs' input, inplace must be False.
        name (str, optional): The default value is None.  Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name` .
    
    Returns:
        Output of sigmoid operator, a Tensor with shape same as input
    
    Examples:
        .. code-block:: python
          
          import paddle.fluid as fluid
          import paddle.nn.functional as functional
          import numpy as np
          # In the static graph mode
          input = fluid.data(name="input", shape=[None, 4])
          output = functional.sigmoid(input)
          place = fluid.CPUPlace()
          exe = fluid.Executor(place)
          exe.run(fluid.default_startup_program())
          input_data = np.array([1.0, 2.0, 3.0, 4.0]).astype('float32')
          output_data = exe.run(feed={"input": input_data},
                                fetch_list=[output])
          print(output_data) # [0.7310586, 0.880797, 0.95257413, 0.98201376]
          # In the dynamic graph mode
          with fluid.dygraph.guard():
              input = fluid.dygraph.to_variable(input_data)
              output = functional.sigmoid(input)
              print(output) # [0.7310586, 0.880797, 0.95257413, 0.98201376]
    """

    if in_dygraph_mode():
        if inplace:
            warnings.warn(
                "Inplace on sigmoid is not allowed and will be discarded in dygraph mode currently."
            )
        return core.ops.sigmoid(input)

351
    check_variable_and_dtype(input, 'input', ['float16', 'float32', 'float64'],
352 353 354 355 356 357 358 359
                             'sigmoid')
    helper = LayerHelper("sigmoid", **locals())
    outputs = helper.create_variable_for_type_inference(input.dtype)
    helper.append_op(
        type='sigmoid', inputs={'X': [input]}, outputs={'Out': outputs})
    return outputs


360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455
def softmax(x, axis=-1, name=None):
    """
    This operator implements the softmax layer. The calculation process is as follows:

    1. The dimension :attr:`axis` of ``x`` will be permuted to the last.

    2. Then ``x`` will be logically flattened to a 2-D matrix. The matrix's second
    dimension(row length) is the same as the dimension :attr:`axis` of ``x``,
    and the first dimension(column length) is the product of all other dimensions
    of ``x``. For each row of the matrix, the softmax operator squashes the
    K-dimensional(K is the width of the matrix, which is also the size of ``x``'s
    dimension :attr:`axis`) vector of arbitrary real values to a K-dimensional
    vector of real values in the range [0, 1] that add up to 1.

    3. After the softmax operation is completed, the inverse operations of steps 1 and 2
    are performed to restore the two-dimensional matrix to the same dimension as the ``x`` .

    It computes the exponential of the given dimension and the sum of exponential
    values of all the other dimensions in the K-dimensional vector input.
    Then the ratio of the exponential of the given dimension and the sum of
    exponential values of all the other dimensions is the output of the softmax
    operator.

    For each row :math:`i` and each column :math:`j` in the matrix, we have:

    .. math::

        out[i, j] = \\frac{\exp(x[i, j])}{\sum_j(exp(x[i, j])}

    Example:

    .. code-block:: text

        Case 1:
          Input:
            x.shape = [2, 3, 4]
            x.data = [[[2.0, 3.0, 4.0, 5.0],
                       [3.0, 4.0, 5.0, 6.0],
                       [7.0, 8.0, 8.0, 9.0]],
                      [[1.0, 2.0, 3.0, 4.0],
                       [5.0, 6.0, 7.0, 8.0],
                       [6.0, 7.0, 8.0, 9.0]]]

          Attrs:
            axis = -1

          Output:
            out.shape = [2, 3, 4]
            out.data = [[[0.0320586 , 0.08714432, 0.23688282, 0.64391426],
                         [0.0320586 , 0.08714432, 0.23688282, 0.64391426],
                         [0.07232949, 0.19661193, 0.19661193, 0.53444665]],
                        [[0.0320586 , 0.08714432, 0.23688282, 0.64391426],
                         [0.0320586 , 0.08714432, 0.23688282, 0.64391426],
                         [0.0320586 , 0.08714432, 0.23688282, 0.64391426]]]

        Case 2:
          Input:
            x.shape = [2, 3, 4]
            x.data = [[[2.0, 3.0, 4.0, 5.0],
                       [3.0, 4.0, 5.0, 6.0],
                       [7.0, 8.0, 8.0, 9.0]],
                      [[1.0, 2.0, 3.0, 4.0],
                       [5.0, 6.0, 7.0, 8.0],
                       [6.0, 7.0, 8.0, 9.0]]]
          Attrs:
            axis = 1

          Output:
            out.shape = [2, 3, 4]
            out.data = [[[0.00657326, 0.00657326, 0.01714783, 0.01714783],
                         [0.01786798, 0.01786798, 0.04661262, 0.04661262],
                         [0.97555875, 0.97555875, 0.93623955, 0.93623955]],
                        [[0.00490169, 0.00490169, 0.00490169, 0.00490169],
                         [0.26762315, 0.26762315, 0.26762315, 0.26762315],
                         [0.72747516, 0.72747516, 0.72747516, 0.72747516]]]

    Args:
        x (Tensor): The input multi-dimension Tensor with data type float32, float64.
        axis (int, optional): The axis along which to perform softmax calculations.
            It should be in range [-D, D), where D is the dimensions of ``x`` .
            When ``axis`` < 0, it works the same way as :math:`axis + D` .
            Default is -1.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A Tensor with the same data type and shape as ``x`` .

    Examples:

        .. code-block:: python

        import paddle
        import paddle.nn.functional as F
        import numpy as np

456
        paddle.disable_static()
457 458 459 460 461 462 463

        x = np.array([[[2.0, 3.0, 4.0, 5.0],
                       [3.0, 4.0, 5.0, 6.0],
                       [7.0, 8.0, 8.0, 9.0]],
                      [[1.0, 2.0, 3.0, 4.0],
                       [5.0, 6.0, 7.0, 8.0],
                       [6.0, 7.0, 8.0, 9.0]]], 'float32')
464
        x = paddle.to_tensor(x)
465 466 467 468 469 470 471 472 473 474 475
        out = F.softmax(x)
        # [[[0.0320586 , 0.08714432, 0.23688282, 0.64391426],
        #   [0.0320586 , 0.08714432, 0.23688282, 0.64391426],
        #   [0.07232949, 0.19661193, 0.19661193, 0.53444665]],
        # [[0.0320586 , 0.08714432, 0.23688282, 0.64391426],
        #   [0.0320586 , 0.08714432, 0.23688282, 0.64391426],
        #   [0.0320586 , 0.08714432, 0.23688282, 0.64391426]]]
    """
    return paddle.fluid.layers.softmax(input=x, axis=axis, name=name)


476 477
def log_softmax(input, axis=None, dtype=None, name=None):
    """
H
hong 已提交
478 479
	:alias_main: paddle.nn.functional.log_softmax
	:alias: paddle.nn.functional.log_softmax,paddle.nn.functional.activation.log_softmax
S
swtkiwi 已提交
480

481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535
    This operator implements the log_softmax layer. The calculation process is as follows:

    .. math::

        Out[i, j] = log(softmax(x)) 
                  = log(\\frac{\exp(X[i, j])}{\sum_j(exp(X[i, j])})

    Parameters:
        input (Variable): The input variable. A multi-dimension Tensor with type float32, or float64.
        axis (int, optional): The index of dimension to perform softmax calculations, it should be in
            range :math:`[-1, rank-1]`, while :math:`rank` is the rank of input variable. Default: None. 
            None and -1 means the last dimension.
        dtype (np.dtype|core.VarDesc.VarType|str): The desired data type of returned tensor. If specified,
            the input tensor is casted to dtype before the operation is performed. This is useful for
            preventing data type overflows. Default: None. Supported dtype: float32 or float64
        name (str, optional): The default value is None.  Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name` .
 
    Returns:
        Variable: ``Tensor`` indicates the output of softmax. The data type and shape are the same as ``input``.

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          import paddle.nn.functional as F
          import numpy as np

          data = np.array([[[-2.0, 3.0, -4.0, 5.0],
                            [3.0, -4.0, 5.0, -6.0],
                            [-7.0, -8.0, 8.0, 9.0]],
                           [[1.0, -2.0, -3.0, 4.0],
                            [-5.0, 6.0, 7.0, -8.0],
                            [6.0, 7.0, 8.0, 9.0]]]).astype('float32')
          with fluid.dygraph.guard():
              data = fluid.dygraph.to_variable(data)
              res = F.log_softmax(data, -1)
              # [[[ -7.1278396   -2.1278396   -9.127839    -0.12783948]
              #   [ -2.1270514   -9.127051    -0.12705144 -11.127051  ]
              #   [-16.313261   -17.313261    -1.3132617   -0.31326184]]
              #  [[ -3.0518122   -6.051812    -7.051812    -0.051812  ]
              #   [-12.313267    -1.3132664   -0.3132665  -15.313267  ]
              #   [ -3.4401896   -2.4401896   -1.4401896   -0.44018966]]]
    """

    axis = -1 if axis is None else axis
    dtype = convert_np_dtype_to_dtype_(dtype) if dtype is not None else dtype

    if in_dygraph_mode():
        outs_cast = input if dtype is None \
            else core.ops.cast(input, 'in_dtype', input.dtype, 'out_dtype', dtype)
        outs_softmax = core.ops.softmax(outs_cast, 'axis', axis, 'use_cudnn',
                                        False)
        return core.ops.log(outs_softmax)

536 537 538
    if dtype is None:
        check_variable_and_dtype(
            input, 'input', ['float16', 'float32', 'float64'], 'log_softmax')
539

540
    helper = LayerHelper("log_softmax", **locals())
541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563
    outs_cast = input
    if dtype is not None:
        outs_cast = helper.create_variable_for_type_inference(dtype)
        helper.append_op(
            type='cast',
            inputs={'X': input},
            outputs={'Out': outs_cast},
            attrs={'in_dtype': input.dtype,
                   'out_dtype': dtype})

    outs_softmax = helper.create_variable_for_type_inference(outs_cast.dtype)
    helper.append_op(
        type='softmax',
        inputs={'X': outs_cast},
        outputs={'Out': outs_softmax},
        attrs={'axis': axis,
               'use_cudnn': False})

    outs_log = helper.create_variable_for_type_inference(outs_softmax.dtype)
    helper.append_op(
        type='log', inputs={'X': outs_softmax}, outputs={'Out': outs_log})

    return outs_log