operator.cc 14.4 KB
Newer Older
Q
Qiao Longfei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/framework/operator.h"
16
#include <algorithm>
T
tensor-tang 已提交
17
#include <atomic>
18
#include "paddle/framework/lod_tensor_array.h"
19
#include "paddle/framework/shape_inference.h"
20
#include "paddle/framework/var_type.h"
Q
Qiao Longfei 已提交
21 22 23 24

namespace paddle {
namespace framework {

25
std::string OperatorBase::Input(const std::string& name) const {
Y
Yu Yang 已提交
26
  auto& ins = Inputs(name);
Y
Yu Yang 已提交
27
  PADDLE_ENFORCE_LE(ins.size(), 1UL,
28 29
                    "Operator %s's input %s should contain only one variable.",
                    type_, name);
Y
Yu Yang 已提交
30
  return ins.empty() ? kEmptyVarName : ins[0];
Y
Yan Chunwei 已提交
31 32
}

Y
Yu Yang 已提交
33 34
const std::vector<std::string>& OperatorBase::Inputs(
    const std::string& name) const {
Y
Yu Yang 已提交
35
  auto it = inputs_.find(name);
36 37
  PADDLE_ENFORCE(it != inputs_.end(), "Operator %s does not have the input %s.",
                 type_, name);
Y
Yu Yang 已提交
38
  return it->second;
Y
Yan Chunwei 已提交
39 40
}

41
std::string OperatorBase::Output(const std::string& name) const {
Y
Yu Yang 已提交
42
  auto& outs = Outputs(name);
Y
Yu Yang 已提交
43
  PADDLE_ENFORCE_LE(outs.size(), 1UL,
44 45
                    "Operator %s's output %s should contain only one variable.",
                    type_, name);
Y
Yu Yang 已提交
46
  return outs.empty() ? kEmptyVarName : outs[0];
Y
Yan Chunwei 已提交
47 48
}

Y
Yu Yang 已提交
49 50
const std::vector<std::string>& OperatorBase::Outputs(
    const std::string& name) const {
Y
Yu Yang 已提交
51
  auto it = outputs_.find(name);
52 53
  PADDLE_ENFORCE(it != outputs_.end(),
                 "Operator %s does not have an output called %s.", type_, name);
Y
Yu Yang 已提交
54
  return it->second;
Y
Yan Chunwei 已提交
55 56
}

Q
Qiao Longfei 已提交
57 58
std::string OperatorBase::DebugString() const {
  std::stringstream ss;
Y
Yu Yang 已提交
59
  ss << "Op(" << type_ << "), inputs:{";
Y
Yu Yang 已提交
60 61
  for (auto it = inputs_.begin(); it != inputs_.end();) {
    auto& input = *it;
Y
Yu Yang 已提交
62 63 64 65 66 67
    ss << input.first << "[";
    for (size_t i = 0; i < input.second.size(); ++i) {
      ss << input.second[i];
      if (i != input.second.size() - 1) {
        ss << ", ";
      }
68
    }
Y
Yu Yang 已提交
69
    ss << "]";
Y
Yu Yang 已提交
70 71
    ++it;
    if (it != inputs_.end()) {
72 73
      ss << ", ";
    }
Q
Qiao Longfei 已提交
74
  }
Y
Yu Yang 已提交
75
  ss << "}, outputs:{";
Y
Yu Yang 已提交
76 77
  for (auto it = outputs_.begin(); it != outputs_.end();) {
    auto& output = *it;
Y
Yu Yang 已提交
78 79 80 81 82 83
    ss << output.first << "[";
    for (size_t i = 0; i < output.second.size(); ++i) {
      ss << output.second[i];
      if (i != output.second.size() - 1) {
        ss << ", ";
      }
84
    }
Y
Yu Yang 已提交
85
    ss << "]";
Y
Yu Yang 已提交
86 87
    ++it;
    if (it != outputs_.end()) {
88 89
      ss << ", ";
    }
Q
Qiao Longfei 已提交
90
  }
Y
Yu Yang 已提交
91
  ss << "}.";
Q
Qiao Longfei 已提交
92 93 94
  return ss.str();
}

D
dongzhihong 已提交
95 96
void OperatorBase::Rename(const std::string& old_name,
                          const std::string& new_name) {
Y
Yu Yang 已提交
97 98 99 100 101 102 103
  for (auto& input : inputs_) {
    std::replace(input.second.begin(), input.second.end(), old_name, new_name);
  }
  for (auto& output : outputs_) {
    std::replace(output.second.begin(), output.second.end(), old_name,
                 new_name);
  }
D
dongzhihong 已提交
104 105
}

Y
Yu Yang 已提交
106
OperatorBase::OperatorBase(const std::string& type,
Y
Yu Yang 已提交
107 108
                           const VariableNameMap& inputs,
                           const VariableNameMap& outputs,
Y
Yu Yang 已提交
109 110
                           const AttributeMap& attrs)
    : type_(type), inputs_(inputs), outputs_(outputs), attrs_(attrs) {
111 112
  GenerateTemporaryNames();
  CheckAllInputOutputSet();
Y
Yu Yang 已提交
113
}
114

Q
qijun 已提交
115 116
std::vector<std::string> OperatorBase::InputVars() const {
  std::vector<std::string> ret_val;
Y
Yu Yang 已提交
117
  for (auto& o : inputs_) {
Q
qijun 已提交
118 119 120 121 122 123
    ret_val.reserve(ret_val.size() + o.second.size());
    ret_val.insert(ret_val.end(), o.second.begin(), o.second.end());
  }
  return ret_val;
}

Y
Yu Yang 已提交
124 125 126 127 128 129 130 131 132 133
std::vector<std::string> OperatorBase::OutputVars(bool has_intermediate) const {
  std::vector<std::string> ret_val;
  if (has_intermediate) {
    // push all outputs into ret_val
    for (auto& o : outputs_) {
      ret_val.reserve(ret_val.size() + o.second.size());
      ret_val.insert(ret_val.end(), o.second.begin(), o.second.end());
    }
    return ret_val;
  }
Y
Yu Yang 已提交
134
  auto& info = OpInfoMap::Instance().Get(Type());
Y
Yu Yang 已提交
135 136

  // get all OpProto::Var for outputs
Y
Yu Yang 已提交
137
  for (auto& o : info.Proto().outputs()) {
Y
Yu Yang 已提交
138 139 140 141 142 143 144 145 146
    // ignore all intermediate output
    if (o.intermediate()) continue;
    auto out = outputs_.find(o.name());
    if (out != outputs_.end()) {
      ret_val.reserve(ret_val.size() + out->second.size());
      ret_val.insert(ret_val.end(), out->second.begin(), out->second.end());
    }
  }
  return ret_val;
D
dongzhihong 已提交
147 148
}

149 150 151
void OperatorBase::CheckAllInputOutputSet() const {
  auto& info_map = OpInfoMap::Instance();
  auto* op_info = info_map.GetNullable(Type());
Y
Yu Yang 已提交
152
  if (op_info == nullptr || op_info->proto_ == nullptr) return;
153 154 155

  for (auto& in : op_info->Proto().inputs()) {
    PADDLE_ENFORCE(inputs_.find(in.name()) != inputs_.end(),
Y
Yu Yang 已提交
156
                   "Type %s's input %s is not set", Type(), in.name());
157 158 159 160
  }

  for (auto& out : op_info->Proto().outputs()) {
    PADDLE_ENFORCE(outputs_.find(out.name()) != outputs_.end(),
Y
Yu Yang 已提交
161
                   "Type %s's output %s is not set", Type(), out.name());
162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177
  }
}

void OperatorBase::GenerateTemporaryNames() {
  static std::atomic<size_t> gUniqId(0UL);
  for (auto& output : outputs_) {
    for (auto& output_name : output.second) {
      if (output_name == kTempVarName) {
        output_name += type_;
        output_name += "@";
        output_name += std::to_string(gUniqId.fetch_add(1));
      }
    }
  }
}

Q
QI JUN 已提交
178 179 180 181
static const Tensor* GetTensorFromVar(const Variable* var) {
  const Tensor* t = nullptr;
  if (var->IsType<LoDTensor>()) {
    t = &(var->Get<LoDTensor>());
Y
Yang Yang 已提交
182 183
  } else if (var->IsType<Tensor>()) {
    t = &(var->Get<Tensor>());
Q
QI JUN 已提交
184 185 186
  } else if (var->IsType<SelectedRows>()) {
    t = &(var->Get<SelectedRows>().value());
  } else {
Y
Yang Yang 已提交
187 188
    PADDLE_THROW("Variable type_id %s, expect LoDTensor/SelectedRows.",
                 var->Type().name());
Q
QI JUN 已提交
189 190 191 192 193 194 195 196
  }
  return t;
}

static Tensor* GetMutableTensorFromVar(Variable* var) {
  Tensor* t = nullptr;
  if (var->IsType<LoDTensor>()) {
    t = var->GetMutable<LoDTensor>();
Y
Yang Yang 已提交
197 198
  } else if (var->IsType<Tensor>()) {
    t = var->GetMutable<Tensor>();
Q
QI JUN 已提交
199 200 201
  } else if (var->IsType<SelectedRows>()) {
    t = var->GetMutable<SelectedRows>()->mutable_value();
  } else {
Y
Yang Yang 已提交
202 203
    PADDLE_THROW("Variable type_id %s, expect LoDTensor/SelectedRows.",
                 var->Type().name());
Q
QI JUN 已提交
204 205 206 207
  }
  return t;
}

208
template <>
209
const Tensor* ExecutionContext::Input<Tensor>(const std::string& name) const {
210
  auto* var = InputVar(name);
211
  return var == nullptr ? nullptr : GetTensorFromVar(var);
212 213 214
}

template <>
215
const std::vector<const Tensor*> ExecutionContext::MultiInput<Tensor>(
216 217 218 219
    const std::string& name) const {
  auto names = op().Inputs(name);
  std::vector<const Tensor*> res;
  res.reserve(names.size());
220 221 222 223 224
  std::transform(names.begin(), names.end(), std::back_inserter(res),
                 [&](const std::string& sub_name) {
                   auto var = scope_.FindVar(sub_name);
                   return var == nullptr ? nullptr : GetTensorFromVar(var);
                 });
225 226 227 228
  return res;
}

template <>
229
Tensor* ExecutionContext::Output<Tensor>(const std::string& name) const {
230
  auto var = OutputVar(name);
Q
QI JUN 已提交
231
  return var == nullptr ? nullptr : GetMutableTensorFromVar(var);
232 233 234
}

template <>
235
std::vector<Tensor*> ExecutionContext::MultiOutput<Tensor>(
236 237 238 239
    const std::string& name) const {
  auto names = op().Outputs(name);
  std::vector<Tensor*> res;
  res.reserve(names.size());
240 241
  std::transform(names.begin(), names.end(), std::back_inserter(res),
                 [&](const std::string& sub_name) {
242 243
                   auto var = scope_.FindVar(sub_name);
                   return var == nullptr ? nullptr
Q
QI JUN 已提交
244
                                         : GetMutableTensorFromVar(var);
245
                 });
246 247 248
  return res;
}

Y
Yu Yang 已提交
249
std::ostream& operator<<(std::ostream& os, const OpKernelType& kernel_key) {
250 251 252 253 254
  os << "place[" << kernel_key.place_ << "]:data_type[" << kernel_key.data_type_
     << "]";
  return os;
}

Y
Yu Yang 已提交
255 256 257 258 259 260 261 262 263 264 265 266 267 268 269
bool OpSupportGPU(const std::string& op_type) {
  auto& all_kernels = OperatorWithKernel::AllOpKernels();
  auto it = all_kernels.find(op_type);
  if (it == all_kernels.end()) {
    // All control operator must support GPU
    return true;
  }
  for (auto& kern_pair : it->second) {
    if (platform::is_gpu_place(kern_pair.first.place_)) {
      return true;
    }
  }
  return false;
}

270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346
class RuntimeInferShapeContext : public InferShapeContext {
 public:
  RuntimeInferShapeContext(const OperatorBase& op, const Scope& scope)
      : op_(op), scope_(scope) {}

  bool HasInput(const std::string& name) const override {
    auto& ins = Inputs(name);
    size_t length = ins.size();
    if (length == 0) {
      return false;
    }
    PADDLE_ENFORCE_EQ(length, 1UL, "Input %s should have more than one inputs",
                      name);
    auto ipt = ins[0];
    auto* var = ipt == kEmptyVarName ? nullptr : scope_.FindVar(ipt);
    return var != nullptr;
  }

  bool HasOutput(const std::string& name) const override {
    auto& outs = Outputs(name);
    size_t length = outs.size();
    if (length == 0) {
      return false;
    }
    PADDLE_ENFORCE_EQ(length, 1UL, "Output %s should have more than one inputs",
                      name);
    auto ipt = outs[0];
    auto* var = ipt == kEmptyVarName ? nullptr : scope_.FindVar(ipt);
    return var != nullptr;
  }

  bool HasInputs(const std::string& name) const override {
    auto inputs = op_.Inputs(name);
    if (inputs.empty()) {
      return false;
    }
    for (auto& input : inputs) {
      if (scope_.FindVar(input) == nullptr) {
        return false;
      }
    }
    return true;
  }

  bool HasOutputs(const std::string& name) const override {
    auto outputs = op_.Outputs(name);
    if (outputs.empty()) {
      return false;
    }
    for (auto& output : outputs) {
      if (scope_.FindVar(output) == nullptr) {
        return false;
      }
    }
    return true;
  }

  DDim GetInputDim(const std::string& name) const override {
    return GetDim(op_.Input(name));
  }

  void SetOutputDim(const std::string& name, const DDim& dim) override {
    SetDim(op_.Output(name), dim);
  }

  AttrReader Attrs() const override { return AttrReader(op_.Attrs()); }

  const std::vector<std::string>& Inputs(
      const std::string& name) const override {
    return op_.Inputs(name);
  }

  const std::vector<std::string>& Outputs(
      const std::string& name) const override {
    return op_.Outputs(name);
  }

Q
Qiao Longfei 已提交
347 348 349 350 351 352 353 354 355 356 357 358 359 360
  void ShareLoD(const std::string& in, const std::string& out, size_t i = 0,
                size_t j = 0) const override {
    PADDLE_ENFORCE_LT(i, Inputs(in).size());
    PADDLE_ENFORCE_LT(j, Outputs(out).size());
    Variable* in_var = scope_.FindVar(Inputs(in)[i]);
    Variable* out_var = scope_.FindVar(Outputs(out)[j]);
    if (!in_var->IsType<LoDTensor>()) return;
    PADDLE_ENFORCE(out_var->IsType<LoDTensor>(),
                   "The %d-th output of Output(%s) must be LoDTensor.", j, out);
    auto in_tensor = in_var->Get<LoDTensor>();
    auto* out_tensor = out_var->GetMutable<LoDTensor>();
    out_tensor->set_lod(in_tensor.lod());
  }

361 362 363
  bool IsRuntime() const override { return true; }

 protected:
364 365 366 367
  DDim GetDim(const std::string& name) const override {
    Variable* var = scope_.FindVar(name);
    if (var->IsType<LoDTensor>()) {
      return var->Get<LoDTensor>().dims();
Y
Yang Yang 已提交
368 369
    } else if (var->IsType<Tensor>()) {
      return var->Get<Tensor>().dims();
370 371 372
    } else if (var->IsType<SelectedRows>()) {
      return var->Get<SelectedRows>().GetCompleteDims();
    } else {
Y
Yang Yang 已提交
373 374
      PADDLE_THROW("Variable %s type_id %s, expect LoDTensor/SelectedRows.",
                   name, var->Type().name());
375 376 377 378 379 380 381
    }
  }

  void SetDim(const std::string& name, const DDim& dim) override {
    Variable* var = scope_.FindVar(name);
    if (var->IsType<LoDTensor>()) {
      var->GetMutable<LoDTensor>()->Resize(dim);
Y
Yang Yang 已提交
382 383
    } else if (var->IsType<Tensor>()) {
      var->GetMutable<Tensor>()->Resize(dim);
384 385 386
    } else if (var->IsType<SelectedRows>()) {
      var->GetMutable<SelectedRows>()->set_height(dim[0]);
    } else {
Y
Yang Yang 已提交
387 388
      PADDLE_THROW("Variable %s type_id %s, expect LoDTensor/SelectedRows.",
                   name, var->Type().name());
389 390 391
    }
  }

392 393 394 395 396 397
  VarDesc::VarType GetVarType(const std::string& name) const override {
    auto* var = scope_.FindVar(name);
    return ToVarType(var->Type());
  }

 private:
398 399 400 401 402 403 404 405 406 407 408 409 410 411 412
  const OperatorBase& op_;
  const Scope& scope_;
};

void OperatorWithKernel::Run(const Scope& scope,
                             const platform::DeviceContext& dev_ctx) const {
  RuntimeInferShapeContext infer_shape_ctx(*this, scope);
  this->InferShape(&infer_shape_ctx);

  ExecutionContext ctx(*this, scope, dev_ctx);

  // check if op[type] has kernel registered.
  auto& all_op_kernels = AllOpKernels();
  auto kernels_iter = all_op_kernels.find(type_);
  if (kernels_iter == all_op_kernels.end()) {
Y
Yu Yang 已提交
413 414
    PADDLE_THROW(
        "There are no kernels which are registered in the %s operator.", type_);
415 416 417 418
  }

  // check if op[type] have kernel for kernel_key
  OpKernelMap& kernels = kernels_iter->second;
Y
Yu Yang 已提交
419
  auto kernel_key = GetKernelType(ctx);
420 421 422
  auto kernel_iter = kernels.find(kernel_key);

  if (kernel_iter == kernels.end()) {
Y
Yu Yang 已提交
423
    PADDLE_THROW("The operator %s does not support %s", type_, kernel_key);
424 425 426 427
  }

  kernel_iter->second->Compute(ctx);
}
Y
Yu Yang 已提交
428 429
OpKernelType OperatorWithKernel::GetKernelType(
    const ExecutionContext& ctx) const {
Q
QI JUN 已提交
430
  return OpKernelType(IndicateDataType(ctx), ctx.GetPlace());
Y
Yu Yang 已提交
431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459
}
DataType OperatorWithKernel::IndicateDataType(
    const ExecutionContext& ctx) const {
  auto& scope = ctx.scope();
  int data_type = -1;
  for (auto& input : this->inputs_) {
    for (auto& ipt_name : input.second) {
      auto* var = scope.FindVar(ipt_name);
      if (var != nullptr) {
        const Tensor* t = nullptr;
        if (var->IsType<Tensor>()) {
          t = &var->Get<Tensor>();
        } else if (var->IsType<LoDTensor>()) {
          t = &var->Get<LoDTensor>();
        } else if (var->IsType<SelectedRows>()) {
          t = &(var->Get<SelectedRows>().value());
        }
        if (t != nullptr) {
          int tmp = static_cast<int>(ToDataType(t->type()));
          PADDLE_ENFORCE(tmp == data_type || data_type == -1,
                         "DataType of Paddle Op %s must be the same.", Type());
          data_type = tmp;
        }
      }
    }
  }
  PADDLE_ENFORCE(data_type != -1, "DataType should be indicated by input");
  return static_cast<DataType>(data_type);
}
460

Q
Qiao Longfei 已提交
461
}  // namespace framework
L
liaogang 已提交
462
}  // namespace paddle