test_imperative_auto_prune.py 18.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest
16
import paddle
17 18
import paddle.fluid as fluid
import numpy as np
19
from paddle.fluid.framework import _test_eager_guard
20 21 22


class AutoPruneLayer0(fluid.Layer):
23
    def __init__(self, input_size):
24
        super().__init__()
25 26
        self.linear1 = fluid.dygraph.Linear(
            input_size,
27 28
            5,
            param_attr=fluid.initializer.ConstantInitializer(value=2),
29 30
            bias_attr=False,
        )
31 32
        self.linear2 = fluid.dygraph.Linear(
            5,
33 34
            5,
            param_attr=fluid.initializer.ConstantInitializer(value=2),
35 36
            bias_attr=False,
        )
37 38

    def forward(self, x, y):
39 40
        a = self.linear1(x)
        b = self.linear2(y)
41 42 43 44 45 46
        c = fluid.layers.mul(a, b)
        d = fluid.layers.reduce_mean(c)
        return d


class AutoPruneLayer1(fluid.Layer):
47
    def __init__(self, input_size):
48
        super().__init__()
49 50
        self.linear1 = fluid.dygraph.Linear(
            input_size,
51 52
            5,
            param_attr=fluid.initializer.ConstantInitializer(value=2),
53 54
            bias_attr=False,
        )
55 56
        self.linear2 = fluid.dygraph.Linear(
            5,
57 58
            5,
            param_attr=fluid.initializer.ConstantInitializer(value=2),
59 60
            bias_attr=False,
        )
61 62

    def forward(self, x, y):
63 64
        a = self.linear1(x)
        b = self.linear2(y)
65 66 67 68 69 70 71
        b.stop_gradient = True
        c = fluid.layers.mul(a, b)
        d = fluid.layers.reduce_mean(c)
        return d


class AutoPruneLayer2(fluid.Layer):
72
    def __init__(self, input_size):
73
        super().__init__()
74 75
        self.linear = fluid.dygraph.Linear(input_size, 10, act=None)
        self.linear2 = fluid.dygraph.Linear(1, 1, act=None)
76 77

    def forward(self, x, label):
78 79
        feature = self.linear(x)
        label = self.linear2(label)
80 81 82 83
        label = fluid.layers.cast(label, dtype="float32")
        label = fluid.layers.cast(label, dtype='int64')
        # Note that the label is not persistable in fluid.layers.cross_entropy.
        loss = fluid.layers.cross_entropy(input=feature, label=label)
84
        loss = paddle.mean(loss)
85 86 87 88
        return loss


class AutoPruneLayer3(fluid.Layer):
89
    def __init__(self, input_size):
90
        super().__init__()
91
        self.linear = fluid.dygraph.Linear(input_size, 20, act=None)
92 93

    def forward(self, x, label, test_num):
94
        feature = self.linear(x)
95 96 97
        part1, part2 = fluid.layers.split(
            feature, num_or_sections=[10, 10], dim=1
        )
98 99
        # Note that: part2 is not used.
        loss = fluid.layers.cross_entropy(input=part1, label=label)
100
        loss = paddle.mean(loss)
101 102 103 104 105 106 107
        if test_num == 1:
            return loss, part2
        else:
            return loss, part1, part2


class MyLayer(fluid.Layer):
108
    def __init__(self, input_size, vocab_size, size, dtype="float32"):
109
        super().__init__(dtype=dtype)
110 111
        self.embed0 = fluid.Embedding(size=(vocab_size, size))
        self.embed1 = fluid.Embedding(size=(vocab_size, size))
112 113
        self.linear_0 = fluid.Linear(input_size, size, dtype=dtype)
        self.linear_1 = fluid.Linear(input_size, size, dtype=dtype)
114 115

    def forward(self, x):
116 117
        # this method involves only the linear layers
        loss = fluid.layers.reduce_mean(self.linear_0(x) + self.linear_1(x))
118 119 120
        return loss

    def linear0(self, x):
121
        loss = fluid.layers.reduce_mean(self.linear_0(x))
122 123 124
        return loss

    def embed_linear0(self, x):
125
        loss = fluid.layers.reduce_mean(self.linear_0(self.embed0(x)))
126 127 128 129
        return loss


class MyLayer2(fluid.Layer):
130
    def __init__(self, input_size, vocab_size, size, dtype="float32"):
131
        super().__init__(dtype=dtype)
132 133
        self.embed0 = fluid.Embedding(size=(vocab_size, size))
        self.embed1 = fluid.Embedding(size=(vocab_size, size))
134 135
        self.linear_0 = fluid.Linear(input_size, size, dtype=dtype)
        self.linear_1 = fluid.Linear(input_size, size, dtype=dtype)
136 137 138 139 140

    def forward(self, indices):
        # mind the difference with MyLayer
        # In this example, the forward method involes all params
        loss = fluid.layers.reduce_mean(
141 142 143
            self.linear_0(self.embed0(indices))
            + self.linear_1(self.embed1(indices))
        )
144 145 146
        return loss

    def linear0(self, x):
147
        loss = fluid.layers.reduce_mean(self.linear_0(x))
148 149 150
        return loss

    def embed_linear0(self, x):
151
        loss = fluid.layers.reduce_mean(self.linear_0(self.embed0(x)))
152 153 154 155
        return loss


class TestImperativeAutoPrune(unittest.TestCase):
156
    def func_auto_prune(self):
157
        with fluid.dygraph.guard():
158
            case1 = AutoPruneLayer0(input_size=5)
159 160 161 162 163 164
            value1 = np.arange(25).reshape(5, 5).astype("float32")
            value2 = np.arange(25).reshape(5, 5).astype("float32")
            v1 = fluid.dygraph.to_variable(value1)
            v2 = fluid.dygraph.to_variable(value2)
            loss = case1(v1, v2)
            loss.backward()
165 166
            self.assertIsNotNone(case1.linear2.weight._grad_ivar())
            self.assertIsNotNone(case1.linear1.weight._grad_ivar())
167

168 169 170 171 172 173
    def test_auto_prune(self):
        with _test_eager_guard():
            self.func_auto_prune()
        self.func_auto_prune()

    def func_auto_prune2(self):
174
        with fluid.dygraph.guard():
175
            case2 = AutoPruneLayer1(input_size=5)
176 177 178 179 180
            value1 = np.arange(25).reshape(5, 5).astype("float32")
            value2 = np.arange(25).reshape(5, 5).astype("float32")
            v1 = fluid.dygraph.to_variable(value1)
            v2 = fluid.dygraph.to_variable(value2)
            loss = case2(v1, v2)
H
hong 已提交
181

182
            loss.backward()
183 184
            self.assertIsNone(case2.linear2.weight._grad_ivar())
            self.assertIsNotNone(case2.linear1.weight._grad_ivar())
185

186 187 188 189 190
    def test_auto_prune2(self):
        with _test_eager_guard():
            self.func_auto_prune2()
        self.func_auto_prune2()

191
    # TODO(jiabin): Support this when we support better split tensor
192
    def func_auto_prune3(self):
193
        with fluid.dygraph.guard():
194
            case3 = AutoPruneLayer3(input_size=784)
195 196 197 198 199 200
            value1 = np.arange(784).reshape(1, 784).astype("float32")
            value2 = np.arange(1).reshape(1, 1).astype("int64")
            v1 = fluid.dygraph.to_variable(value1)
            v2 = fluid.dygraph.to_variable(value2)
            loss, part2 = case3(v1, v2, 1)
            loss.backward()
201
            self.assertIsNotNone(case3.linear.weight._grad_ivar())
202 203
            self.assertTrue((part2.gradient() == 0).all())

204
    def test_auto_prune3(self):
205
        fluid.set_flags({"FLAGS_retain_grad_for_all_tensor": True})
206 207 208
        with _test_eager_guard():
            self.func_auto_prune3()
        self.func_auto_prune3()
209
        fluid.set_flags({"FLAGS_retain_grad_for_all_tensor": False})
210 211

    def func_auto_prune4(self):
212
        with fluid.dygraph.guard():
213
            case4 = AutoPruneLayer3(input_size=784)
214 215 216 217 218 219
            value1 = np.arange(784).reshape(1, 784).astype("float32")
            value2 = np.arange(1).reshape(1, 1).astype("int64")
            v1 = fluid.dygraph.to_variable(value1)
            v2 = fluid.dygraph.to_variable(value2)
            loss, part2 = case4(v1, v2, 1)
            part2.backward()
220
            self.assertIsNotNone(case4.linear.weight._grad_ivar())
221 222
            self.assertTrue((part2.gradient() == 1).all())

223
    def test_auto_prune4(self):
224
        fluid.set_flags({"FLAGS_retain_grad_for_all_tensor": True})
225 226 227
        with _test_eager_guard():
            self.func_auto_prune4()
        self.func_auto_prune4()
228
        fluid.set_flags({"FLAGS_retain_grad_for_all_tensor": False})
229 230

    def func_auto_prune5(self):
231
        with fluid.dygraph.guard():
232
            case4 = AutoPruneLayer3(input_size=784)
233 234 235 236 237 238
            value1 = np.arange(784).reshape(1, 784).astype("float32")
            value2 = np.arange(1).reshape(1, 1).astype("int64")
            v1 = fluid.dygraph.to_variable(value1)
            v2 = fluid.dygraph.to_variable(value2)
            loss, part1, part2 = case4(v1, v2, 2)
            part1.backward()
239
            self.assertIsNotNone(case4.linear.weight._grad_ivar())
240 241
            self.assertTrue((part2.gradient() == 0).all())

242
    def test_auto_prune5(self):
243
        fluid.set_flags({"FLAGS_retain_grad_for_all_tensor": True})
244 245 246
        with _test_eager_guard():
            self.func_auto_prune5()
        self.func_auto_prune5()
247
        fluid.set_flags({"FLAGS_retain_grad_for_all_tensor": False})
248

249
    def func_auto_prune6(self):
250 251 252 253
        with fluid.dygraph.guard():
            value0 = np.arange(26).reshape(2, 13).astype("float32")
            value1 = np.arange(6).reshape(2, 3).astype("float32")
            value2 = np.arange(10).reshape(2, 5).astype("float32")
254 255
            linear = fluid.Linear(13, 5, dtype="float32")
            linear2 = fluid.Linear(3, 3, dtype="float32")
256 257 258
            a = fluid.dygraph.to_variable(value0)
            b = fluid.dygraph.to_variable(value1)
            c = fluid.dygraph.to_variable(value2)
259 260
            out1 = linear(a)
            out2 = linear2(b)
261 262 263
            out1.stop_gradient = True
            out = fluid.layers.concat(input=[out1, out2, c], axis=1)
            out.backward()
264 265
            self.assertIsNone(linear.weight.gradient())
            self.assertIsNone(out1.gradient())
266

267 268 269 270 271 272
    def test_auto_prune6(self):
        with _test_eager_guard():
            self.func_auto_prune6()
        self.func_auto_prune6()

    def func_auto_prune7(self):
273 274 275 276
        with fluid.dygraph.guard():
            value0 = np.arange(26).reshape(2, 13).astype("float32")
            value1 = np.arange(6).reshape(2, 3).astype("float32")
            value2 = np.arange(10).reshape(2, 5).astype("float32")
277 278
            linear = fluid.Linear(13, 5, dtype="float32")
            linear2 = fluid.Linear(3, 3, dtype="float32")
279 280 281
            a = fluid.dygraph.to_variable(value0)
            b = fluid.dygraph.to_variable(value1)
            c = fluid.dygraph.to_variable(value2)
282 283
            out1 = linear(a)
            out2 = linear2(b)
284 285
            out1.stop_gradient = True
            out = fluid.layers.concat(input=[out1, out2, c], axis=1)
286
            out.backward()
287 288
            self.assertIsNone(linear.weight.gradient())
            self.assertIsNone(out1.gradient())
289

290 291 292 293 294 295
    def test_auto_prune7(self):
        with _test_eager_guard():
            self.func_auto_prune7()
        self.func_auto_prune7()

    def func_auto_prune8(self):
296 297 298 299
        with fluid.dygraph.guard():
            value0 = np.arange(26).reshape(2, 13).astype("float32")
            value1 = np.arange(6).reshape(2, 3).astype("float32")
            value2 = np.arange(10).reshape(2, 5).astype("float32")
300 301
            linear = fluid.Linear(13, 5, dtype="float32")
            linear2 = fluid.Linear(5, 3, dtype="float32")
302 303 304
            a = fluid.dygraph.to_variable(value0)
            b = fluid.dygraph.to_variable(value1)
            c = fluid.dygraph.to_variable(value2)
305 306 307 308 309
            out1 = linear(a)
            linear_origin = linear.weight.numpy()
            out2 = linear2(out1)
            linear2_origin = linear2.weight.numpy()
            linear2.weight.stop_gradient = True
310
            out2.backward()
311 312
            optimizer = fluid.optimizer.SGD(
                learning_rate=0.003,
313 314
                parameter_list=(linear.parameters() + linear2.parameters()),
            )
315
            optimizer.minimize(out2)
316 317 318
            np.testing.assert_array_equal(
                linear2_origin, linear2.weight.numpy()
            )
319
            self.assertFalse(
320 321
                np.array_equal(linear_origin, linear.weight.numpy())
            )
322

323 324 325 326 327 328
    def test_auto_prune8(self):
        with _test_eager_guard():
            self.func_auto_prune8()
        self.func_auto_prune8()

    def func_auto_prune9(self):
329 330 331 332
        with fluid.dygraph.guard():
            value0 = np.arange(26).reshape(2, 13).astype("float32")
            value1 = np.arange(6).reshape(2, 3).astype("float32")
            value2 = np.arange(10).reshape(2, 5).astype("float32")
333 334
            linear = fluid.Linear(13, 5, dtype="float32")
            linear2 = fluid.Linear(5, 3, dtype="float32")
335 336 337
            a = fluid.dygraph.to_variable(value0)
            b = fluid.dygraph.to_variable(value1)
            c = fluid.dygraph.to_variable(value2)
338 339 340 341
            out1 = linear(a)
            linear_origin = linear.weight.numpy()
            out2 = linear2(out1)
            linear2_origin = linear2.weight.numpy()
342 343
            out2.stop_gradient = True
            out2.backward()
344 345
            optimizer = fluid.optimizer.SGD(
                learning_rate=0.003,
346 347
                parameter_list=(linear.parameters() + linear2.parameters()),
            )
348
            optimizer.minimize(out2)
349 350 351
            np.testing.assert_array_equal(
                linear2_origin, linear2.weight.numpy()
            )
352
            np.testing.assert_array_equal(linear_origin, linear.weight.numpy())
353
            try:
354
                linear2.weight.gradient()
355 356 357
            except ValueError as e:
                assert type(e) == ValueError

358 359 360 361 362 363
    def test_auto_prune9(self):
        with _test_eager_guard():
            self.func_auto_prune9()
        self.func_auto_prune9()

    def func_auto_prune10(self):
364 365 366 367
        with fluid.dygraph.guard():
            value0 = np.arange(26).reshape(2, 13).astype("float32")
            value1 = np.arange(6).reshape(2, 3).astype("float32")
            value2 = np.arange(10).reshape(2, 5).astype("float32")
368 369
            linear = fluid.Linear(13, 5, dtype="float32")
            linear2 = fluid.Linear(3, 3, dtype="float32")
370 371 372
            a = fluid.dygraph.to_variable(value0)
            b = fluid.dygraph.to_variable(value1)
            c = fluid.dygraph.to_variable(value2)
373 374
            out1 = linear(a)
            out2 = linear2(b)
375 376
            out1.stop_gradient = True
            out = fluid.layers.concat(input=[out1, out2, c], axis=1)
377
            # TODO(jiabin): In Eager Mode we don't actually need sort_sum_gradient, this test should be removed when we don't support fluid anymore.
378 379
            fluid.set_flags({'FLAGS_sort_sum_gradient': True})
            out.backward()
380 381
            self.assertIsNone(linear.weight.gradient())
            self.assertIsNone(out1.gradient())
382

383 384 385 386 387 388
    def test_auto_prune10(self):
        with _test_eager_guard():
            self.func_auto_prune10()
        self.func_auto_prune10()

    def func_auto_prune_with_optimizer(self):
389 390 391 392
        vocab_size = 100
        size = 20
        batch_size = 16

393 394 395
        indices = np.random.randint(
            low=0, high=100, size=(batch_size, 1)
        ).astype("int64")
396 397 398 399
        embed = np.random.randn(batch_size, size).astype("float32")

        place = fluid.CPUPlace()
        with fluid.dygraph.guard(place):
400
            model = MyLayer(size, vocab_size, size)
401
            grad_clip = fluid.clip.GradientClipByGlobalNorm(0.001)
402
            optimizer = fluid.optimizer.AdamOptimizer(
403 404
                0.001, parameter_list=model.parameters(), grad_clip=grad_clip
            )
405
            indices = fluid.dygraph.to_variable(indices)
406
            embed = fluid.dygraph.to_variable(embed)
407 408 409 410
            dummy_loss = model(embed)

            loss = model.embed_linear0(indices)
            loss.backward()
411
            _, params_grads = optimizer.minimize(loss)
412
            for items in params_grads:
413
                assert items[0].name is not model.embed1.weight.name
414
                assert items[0].name is not model.linear_1.weight.name
415
            assert model.embed1.weight._grad_ivar() is None
416
            assert model.linear_1.weight._grad_ivar() is None
417 418

        with fluid.dygraph.guard(place):
419
            model = MyLayer2(size, vocab_size, size)
420
            grad_clip = fluid.clip.GradientClipByGlobalNorm(0.001)
421
            optimizer = fluid.optimizer.AdamOptimizer(
422 423
                0.001, parameter_list=model.parameters(), grad_clip=grad_clip
            )
424 425 426 427 428 429 430

            indices = fluid.dygraph.to_variable(indices)
            emebd = fluid.dygraph.to_variable(embed)
            dummy_loss = model(indices)

            loss = model.embed_linear0(indices)
            loss.backward()
431
            optimizer.minimize(loss)
432
            for items in params_grads:
433
                assert items[0].name is not model.embed1.weight.name
434
                assert items[0].name is not model.linear_1.weight.name
435
            assert model.embed1.weight._grad_ivar() is None
436
            assert model.linear_1.weight._grad_ivar() is None
437

438 439 440 441 442 443
    def test_auto_prune_with_optimizer(self):
        with _test_eager_guard():
            self.func_auto_prune_with_optimizer()
        self.func_auto_prune_with_optimizer()

    def func_case2_prune_no_grad_branch(self):
444 445 446 447 448
        with fluid.dygraph.guard():
            value1 = np.arange(784).reshape(1, 784)
            value2 = np.arange(1).reshape(1, 1)
            v1 = fluid.dygraph.to_variable(value1).astype("float32")
            v2 = fluid.dygraph.to_variable(value2).astype("float32")
449
            case3 = AutoPruneLayer2(input_size=784)
450 451
            loss = case3(v1, v2)
            loss.backward()
452 453
            self.assertIsNone(case3.linear2.weight._grad_ivar())
            self.assertIsNotNone(case3.linear.weight._grad_ivar())
454

455 456 457 458 459 460
    def test_case2_prune_no_grad_branch(self):
        with _test_eager_guard():
            self.func_case2_prune_no_grad_branch()
        self.func_case2_prune_no_grad_branch()

    def func_case3_prune_no_grad_branch2(self):
461 462
        with fluid.dygraph.guard():
            value1 = np.arange(1).reshape(1, 1)
463
            linear = fluid.dygraph.Linear(1, 1, act=None)
464
            label = fluid.dygraph.to_variable(value1).astype("float32")
465
            label = linear(label)
466 467 468
            label = fluid.layers.cast(label, dtype="float32")
            label = fluid.layers.cast(label, dtype='int64')
            out = fluid.layers.one_hot(input=label, depth=100)
469
            loss = paddle.mean(out)
470
            loss.backward()
471
            self.assertIsNone(linear.weight._grad_ivar())
472

473 474 475 476 477 478
    def test_case3_prune_no_grad_branch2(self):
        with _test_eager_guard():
            self.func_case3_prune_no_grad_branch2()
        self.func_case3_prune_no_grad_branch2()

    def func_case4_with_no_grad_op_maker(self):
479 480
        with fluid.dygraph.guard():
            out = fluid.layers.gaussian_random(shape=[20, 30])
481
            loss = paddle.mean(out)
482
            loss.backward()
483
            self.assertIsNone(out._grad_ivar())
484

485 486 487 488 489
    def test_case4_with_no_grad_op_maker(self):
        with _test_eager_guard():
            self.func_case4_with_no_grad_op_maker()
        self.func_case4_with_no_grad_op_maker()

490 491 492

if __name__ == '__main__':
    unittest.main()