test_imperative_auto_prune.py 19.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest
16
import paddle
17 18
import paddle.fluid as fluid
import numpy as np
19
from paddle.fluid.framework import _test_eager_guard
20 21 22


class AutoPruneLayer0(fluid.Layer):
23

24 25 26 27
    def __init__(self, input_size):
        super(AutoPruneLayer0, self).__init__()
        self.linear1 = fluid.dygraph.Linear(
            input_size,
28 29 30
            5,
            param_attr=fluid.initializer.ConstantInitializer(value=2),
            bias_attr=False)
31 32
        self.linear2 = fluid.dygraph.Linear(
            5,
33 34 35 36 37
            5,
            param_attr=fluid.initializer.ConstantInitializer(value=2),
            bias_attr=False)

    def forward(self, x, y):
38 39
        a = self.linear1(x)
        b = self.linear2(y)
40 41 42 43 44 45
        c = fluid.layers.mul(a, b)
        d = fluid.layers.reduce_mean(c)
        return d


class AutoPruneLayer1(fluid.Layer):
46

47 48 49 50
    def __init__(self, input_size):
        super(AutoPruneLayer1, self).__init__()
        self.linear1 = fluid.dygraph.Linear(
            input_size,
51 52 53
            5,
            param_attr=fluid.initializer.ConstantInitializer(value=2),
            bias_attr=False)
54 55
        self.linear2 = fluid.dygraph.Linear(
            5,
56 57 58 59 60
            5,
            param_attr=fluid.initializer.ConstantInitializer(value=2),
            bias_attr=False)

    def forward(self, x, y):
61 62
        a = self.linear1(x)
        b = self.linear2(y)
63 64 65 66 67 68 69
        b.stop_gradient = True
        c = fluid.layers.mul(a, b)
        d = fluid.layers.reduce_mean(c)
        return d


class AutoPruneLayer2(fluid.Layer):
70

71 72 73 74
    def __init__(self, input_size):
        super(AutoPruneLayer2, self).__init__()
        self.linear = fluid.dygraph.Linear(input_size, 10, act=None)
        self.linear2 = fluid.dygraph.Linear(1, 1, act=None)
75 76

    def forward(self, x, label):
77 78
        feature = self.linear(x)
        label = self.linear2(label)
79 80 81 82
        label = fluid.layers.cast(label, dtype="float32")
        label = fluid.layers.cast(label, dtype='int64')
        # Note that the label is not persistable in fluid.layers.cross_entropy.
        loss = fluid.layers.cross_entropy(input=feature, label=label)
83
        loss = paddle.mean(loss)
84 85 86 87
        return loss


class AutoPruneLayer3(fluid.Layer):
88

89 90 91
    def __init__(self, input_size):
        super(AutoPruneLayer3, self).__init__()
        self.linear = fluid.dygraph.Linear(input_size, 20, act=None)
92 93

    def forward(self, x, label, test_num):
94
        feature = self.linear(x)
95 96 97
        part1, part2 = fluid.layers.split(feature,
                                          num_or_sections=[10, 10],
                                          dim=1)
98 99
        # Note that: part2 is not used.
        loss = fluid.layers.cross_entropy(input=part1, label=label)
100
        loss = paddle.mean(loss)
101 102 103 104 105 106 107
        if test_num == 1:
            return loss, part2
        else:
            return loss, part1, part2


class MyLayer(fluid.Layer):
108

109 110
    def __init__(self, input_size, vocab_size, size, dtype="float32"):
        super(MyLayer, self).__init__(dtype=dtype)
111 112
        self.embed0 = fluid.Embedding(size=(vocab_size, size))
        self.embed1 = fluid.Embedding(size=(vocab_size, size))
113 114
        self.linear_0 = fluid.Linear(input_size, size, dtype=dtype)
        self.linear_1 = fluid.Linear(input_size, size, dtype=dtype)
115 116

    def forward(self, x):
117 118
        # this method involves only the linear layers
        loss = fluid.layers.reduce_mean(self.linear_0(x) + self.linear_1(x))
119 120 121
        return loss

    def linear0(self, x):
122
        loss = fluid.layers.reduce_mean(self.linear_0(x))
123 124 125
        return loss

    def embed_linear0(self, x):
126
        loss = fluid.layers.reduce_mean(self.linear_0(self.embed0(x)))
127 128 129 130
        return loss


class MyLayer2(fluid.Layer):
131

132 133
    def __init__(self, input_size, vocab_size, size, dtype="float32"):
        super(MyLayer2, self).__init__(dtype=dtype)
134 135
        self.embed0 = fluid.Embedding(size=(vocab_size, size))
        self.embed1 = fluid.Embedding(size=(vocab_size, size))
136 137
        self.linear_0 = fluid.Linear(input_size, size, dtype=dtype)
        self.linear_1 = fluid.Linear(input_size, size, dtype=dtype)
138 139 140 141 142

    def forward(self, indices):
        # mind the difference with MyLayer
        # In this example, the forward method involes all params
        loss = fluid.layers.reduce_mean(
143 144
            self.linear_0(self.embed0(indices)) +
            self.linear_1(self.embed1(indices)))
145 146 147
        return loss

    def linear0(self, x):
148
        loss = fluid.layers.reduce_mean(self.linear_0(x))
149 150 151
        return loss

    def embed_linear0(self, x):
152
        loss = fluid.layers.reduce_mean(self.linear_0(self.embed0(x)))
153 154 155 156
        return loss


class TestImperativeAutoPrune(unittest.TestCase):
157

158
    def func_auto_prune(self):
159
        with fluid.dygraph.guard():
160
            case1 = AutoPruneLayer0(input_size=5)
161 162 163 164 165 166
            value1 = np.arange(25).reshape(5, 5).astype("float32")
            value2 = np.arange(25).reshape(5, 5).astype("float32")
            v1 = fluid.dygraph.to_variable(value1)
            v2 = fluid.dygraph.to_variable(value2)
            loss = case1(v1, v2)
            loss.backward()
167 168
            self.assertTrue(case1.linear2.weight._grad_ivar() is not None)
            self.assertTrue(case1.linear1.weight._grad_ivar() is not None)
169

170 171 172 173 174 175
    def test_auto_prune(self):
        with _test_eager_guard():
            self.func_auto_prune()
        self.func_auto_prune()

    def func_auto_prune2(self):
176
        with fluid.dygraph.guard():
177
            case2 = AutoPruneLayer1(input_size=5)
178 179 180 181 182
            value1 = np.arange(25).reshape(5, 5).astype("float32")
            value2 = np.arange(25).reshape(5, 5).astype("float32")
            v1 = fluid.dygraph.to_variable(value1)
            v2 = fluid.dygraph.to_variable(value2)
            loss = case2(v1, v2)
H
hong 已提交
183

184
            loss.backward()
185 186
            self.assertTrue(case2.linear2.weight._grad_ivar() is None)
            self.assertTrue(case2.linear1.weight._grad_ivar() is not None)
187

188 189 190 191 192
    def test_auto_prune2(self):
        with _test_eager_guard():
            self.func_auto_prune2()
        self.func_auto_prune2()

193
    # TODO(jiabin): Support this when we support better split tensor
194
    def func_auto_prune3(self):
195
        with fluid.dygraph.guard():
196
            case3 = AutoPruneLayer3(input_size=784)
197 198 199 200 201 202
            value1 = np.arange(784).reshape(1, 784).astype("float32")
            value2 = np.arange(1).reshape(1, 1).astype("int64")
            v1 = fluid.dygraph.to_variable(value1)
            v2 = fluid.dygraph.to_variable(value2)
            loss, part2 = case3(v1, v2, 1)
            loss.backward()
203
            self.assertTrue(case3.linear.weight._grad_ivar() is not None)
204 205
            self.assertTrue((part2.gradient() == 0).all())

206
    def test_auto_prune3(self):
207
        fluid.set_flags({"FLAGS_retain_grad_for_all_tensor": True})
208 209 210
        with _test_eager_guard():
            self.func_auto_prune3()
        self.func_auto_prune3()
211
        fluid.set_flags({"FLAGS_retain_grad_for_all_tensor": False})
212 213

    def func_auto_prune4(self):
214
        with fluid.dygraph.guard():
215
            case4 = AutoPruneLayer3(input_size=784)
216 217 218 219 220 221
            value1 = np.arange(784).reshape(1, 784).astype("float32")
            value2 = np.arange(1).reshape(1, 1).astype("int64")
            v1 = fluid.dygraph.to_variable(value1)
            v2 = fluid.dygraph.to_variable(value2)
            loss, part2 = case4(v1, v2, 1)
            part2.backward()
222
            self.assertTrue(case4.linear.weight._grad_ivar() is not None)
223 224
            self.assertTrue((part2.gradient() == 1).all())

225
    def test_auto_prune4(self):
226
        fluid.set_flags({"FLAGS_retain_grad_for_all_tensor": True})
227 228 229
        with _test_eager_guard():
            self.func_auto_prune4()
        self.func_auto_prune4()
230
        fluid.set_flags({"FLAGS_retain_grad_for_all_tensor": False})
231 232

    def func_auto_prune5(self):
233
        with fluid.dygraph.guard():
234
            case4 = AutoPruneLayer3(input_size=784)
235 236 237 238 239 240
            value1 = np.arange(784).reshape(1, 784).astype("float32")
            value2 = np.arange(1).reshape(1, 1).astype("int64")
            v1 = fluid.dygraph.to_variable(value1)
            v2 = fluid.dygraph.to_variable(value2)
            loss, part1, part2 = case4(v1, v2, 2)
            part1.backward()
241
            self.assertTrue(case4.linear.weight._grad_ivar() is not None)
242 243
            self.assertTrue((part2.gradient() == 0).all())

244
    def test_auto_prune5(self):
245
        fluid.set_flags({"FLAGS_retain_grad_for_all_tensor": True})
246 247 248
        with _test_eager_guard():
            self.func_auto_prune5()
        self.func_auto_prune5()
249
        fluid.set_flags({"FLAGS_retain_grad_for_all_tensor": False})
250

251
    def func_auto_prune6(self):
252 253 254 255
        with fluid.dygraph.guard():
            value0 = np.arange(26).reshape(2, 13).astype("float32")
            value1 = np.arange(6).reshape(2, 3).astype("float32")
            value2 = np.arange(10).reshape(2, 5).astype("float32")
256 257
            linear = fluid.Linear(13, 5, dtype="float32")
            linear2 = fluid.Linear(3, 3, dtype="float32")
258 259 260
            a = fluid.dygraph.to_variable(value0)
            b = fluid.dygraph.to_variable(value1)
            c = fluid.dygraph.to_variable(value2)
261 262
            out1 = linear(a)
            out2 = linear2(b)
263 264 265
            out1.stop_gradient = True
            out = fluid.layers.concat(input=[out1, out2, c], axis=1)
            out.backward()
266
            self.assertTrue(linear.weight.gradient() is None)
267
            self.assertTrue(out1.gradient() is None)
268

269 270 271 272 273 274
    def test_auto_prune6(self):
        with _test_eager_guard():
            self.func_auto_prune6()
        self.func_auto_prune6()

    def func_auto_prune7(self):
275 276 277 278
        with fluid.dygraph.guard():
            value0 = np.arange(26).reshape(2, 13).astype("float32")
            value1 = np.arange(6).reshape(2, 3).astype("float32")
            value2 = np.arange(10).reshape(2, 5).astype("float32")
279 280
            linear = fluid.Linear(13, 5, dtype="float32")
            linear2 = fluid.Linear(3, 3, dtype="float32")
281 282 283
            a = fluid.dygraph.to_variable(value0)
            b = fluid.dygraph.to_variable(value1)
            c = fluid.dygraph.to_variable(value2)
284 285
            out1 = linear(a)
            out2 = linear2(b)
286 287
            out1.stop_gradient = True
            out = fluid.layers.concat(input=[out1, out2, c], axis=1)
288
            out.backward()
289
            self.assertTrue(linear.weight.gradient() is None)
290
            self.assertTrue(out1.gradient() is None)
291

292 293 294 295 296 297
    def test_auto_prune7(self):
        with _test_eager_guard():
            self.func_auto_prune7()
        self.func_auto_prune7()

    def func_auto_prune8(self):
298 299 300 301
        with fluid.dygraph.guard():
            value0 = np.arange(26).reshape(2, 13).astype("float32")
            value1 = np.arange(6).reshape(2, 3).astype("float32")
            value2 = np.arange(10).reshape(2, 5).astype("float32")
302 303
            linear = fluid.Linear(13, 5, dtype="float32")
            linear2 = fluid.Linear(5, 3, dtype="float32")
304 305 306
            a = fluid.dygraph.to_variable(value0)
            b = fluid.dygraph.to_variable(value1)
            c = fluid.dygraph.to_variable(value2)
307 308 309 310 311
            out1 = linear(a)
            linear_origin = linear.weight.numpy()
            out2 = linear2(out1)
            linear2_origin = linear2.weight.numpy()
            linear2.weight.stop_gradient = True
312
            out2.backward()
313 314
            optimizer = fluid.optimizer.SGD(
                learning_rate=0.003,
315
                parameter_list=(linear.parameters() + linear2.parameters()))
316
            optimizer.minimize(out2)
317 318 319 320
            self.assertTrue(
                np.array_equal(linear2_origin, linear2.weight.numpy()))
            self.assertFalse(
                np.array_equal(linear_origin, linear.weight.numpy()))
321

322 323 324 325 326 327
    def test_auto_prune8(self):
        with _test_eager_guard():
            self.func_auto_prune8()
        self.func_auto_prune8()

    def func_auto_prune9(self):
328 329 330 331
        with fluid.dygraph.guard():
            value0 = np.arange(26).reshape(2, 13).astype("float32")
            value1 = np.arange(6).reshape(2, 3).astype("float32")
            value2 = np.arange(10).reshape(2, 5).astype("float32")
332 333
            linear = fluid.Linear(13, 5, dtype="float32")
            linear2 = fluid.Linear(5, 3, dtype="float32")
334 335 336
            a = fluid.dygraph.to_variable(value0)
            b = fluid.dygraph.to_variable(value1)
            c = fluid.dygraph.to_variable(value2)
337 338 339 340
            out1 = linear(a)
            linear_origin = linear.weight.numpy()
            out2 = linear2(out1)
            linear2_origin = linear2.weight.numpy()
341 342
            out2.stop_gradient = True
            out2.backward()
343 344
            optimizer = fluid.optimizer.SGD(
                learning_rate=0.003,
345
                parameter_list=(linear.parameters() + linear2.parameters()))
346
            optimizer.minimize(out2)
347 348
            self.assertTrue(
                np.array_equal(linear2_origin, linear2.weight.numpy()))
349 350
            self.assertTrue(np.array_equal(linear_origin,
                                           linear.weight.numpy()))
351
            try:
352
                linear2.weight.gradient()
353 354 355
            except ValueError as e:
                assert type(e) == ValueError

356 357 358 359 360 361
    def test_auto_prune9(self):
        with _test_eager_guard():
            self.func_auto_prune9()
        self.func_auto_prune9()

    def func_auto_prune10(self):
362 363 364 365
        with fluid.dygraph.guard():
            value0 = np.arange(26).reshape(2, 13).astype("float32")
            value1 = np.arange(6).reshape(2, 3).astype("float32")
            value2 = np.arange(10).reshape(2, 5).astype("float32")
366 367
            linear = fluid.Linear(13, 5, dtype="float32")
            linear2 = fluid.Linear(3, 3, dtype="float32")
368 369 370
            a = fluid.dygraph.to_variable(value0)
            b = fluid.dygraph.to_variable(value1)
            c = fluid.dygraph.to_variable(value2)
371 372
            out1 = linear(a)
            out2 = linear2(b)
373 374
            out1.stop_gradient = True
            out = fluid.layers.concat(input=[out1, out2, c], axis=1)
375
            #TODO(jiabin): In Eager Mode we don't actually need sort_sum_gradient, this test should be removed when we don't support fluid anymore.
376 377
            fluid.set_flags({'FLAGS_sort_sum_gradient': True})
            out.backward()
378
            self.assertTrue(linear.weight.gradient() is None)
379
            self.assertTrue(out1.gradient() is None)
380

381 382 383 384 385 386
    def test_auto_prune10(self):
        with _test_eager_guard():
            self.func_auto_prune10()
        self.func_auto_prune10()

    def func_auto_prune_with_optimizer(self):
387 388 389 390
        vocab_size = 100
        size = 20
        batch_size = 16

391 392
        indices = np.random.randint(low=0, high=100,
                                    size=(batch_size, 1)).astype("int64")
393 394 395 396
        embed = np.random.randn(batch_size, size).astype("float32")

        place = fluid.CPUPlace()
        with fluid.dygraph.guard(place):
397
            model = MyLayer(size, vocab_size, size)
398
            grad_clip = fluid.clip.GradientClipByGlobalNorm(0.001)
399 400
            optimizer = fluid.optimizer.AdamOptimizer(
                0.001, parameter_list=model.parameters(), grad_clip=grad_clip)
401
            indices = fluid.dygraph.to_variable(indices)
402
            embed = fluid.dygraph.to_variable(embed)
403 404 405 406
            dummy_loss = model(embed)

            loss = model.embed_linear0(indices)
            loss.backward()
407
            _, params_grads = optimizer.minimize(loss)
408
            for items in params_grads:
409
                assert items[0].name is not model.embed1.weight.name
410
                assert items[0].name is not model.linear_1.weight.name
411
            assert model.embed1.weight._grad_ivar() is None
412
            assert model.linear_1.weight._grad_ivar() is None
413 414

        with fluid.dygraph.guard(place):
415
            model = MyLayer2(size, vocab_size, size)
416
            grad_clip = fluid.clip.GradientClipByGlobalNorm(0.001)
417 418
            optimizer = fluid.optimizer.AdamOptimizer(
                0.001, parameter_list=model.parameters(), grad_clip=grad_clip)
419 420 421 422 423 424 425

            indices = fluid.dygraph.to_variable(indices)
            emebd = fluid.dygraph.to_variable(embed)
            dummy_loss = model(indices)

            loss = model.embed_linear0(indices)
            loss.backward()
426
            optimizer.minimize(loss)
427
            for items in params_grads:
428
                assert items[0].name is not model.embed1.weight.name
429
                assert items[0].name is not model.linear_1.weight.name
430
            assert model.embed1.weight._grad_ivar() is None
431
            assert model.linear_1.weight._grad_ivar() is None
432

433 434 435 436 437 438
    def test_auto_prune_with_optimizer(self):
        with _test_eager_guard():
            self.func_auto_prune_with_optimizer()
        self.func_auto_prune_with_optimizer()

    def func_case2_prune_no_grad_branch(self):
439 440 441 442 443
        with fluid.dygraph.guard():
            value1 = np.arange(784).reshape(1, 784)
            value2 = np.arange(1).reshape(1, 1)
            v1 = fluid.dygraph.to_variable(value1).astype("float32")
            v2 = fluid.dygraph.to_variable(value2).astype("float32")
444
            case3 = AutoPruneLayer2(input_size=784)
445 446
            loss = case3(v1, v2)
            loss.backward()
447 448
            self.assertTrue(case3.linear2.weight._grad_ivar() is None)
            self.assertTrue(case3.linear.weight._grad_ivar() is not None)
449

450 451 452 453 454 455
    def test_case2_prune_no_grad_branch(self):
        with _test_eager_guard():
            self.func_case2_prune_no_grad_branch()
        self.func_case2_prune_no_grad_branch()

    def func_case3_prune_no_grad_branch2(self):
456 457
        with fluid.dygraph.guard():
            value1 = np.arange(1).reshape(1, 1)
458
            linear = fluid.dygraph.Linear(1, 1, act=None)
459
            label = fluid.dygraph.to_variable(value1).astype("float32")
460
            label = linear(label)
461 462 463
            label = fluid.layers.cast(label, dtype="float32")
            label = fluid.layers.cast(label, dtype='int64')
            out = fluid.layers.one_hot(input=label, depth=100)
464
            loss = paddle.mean(out)
465
            loss.backward()
466
            self.assertTrue(linear.weight._grad_ivar() is None)
467

468 469 470 471 472 473
    def test_case3_prune_no_grad_branch2(self):
        with _test_eager_guard():
            self.func_case3_prune_no_grad_branch2()
        self.func_case3_prune_no_grad_branch2()

    def func_case4_with_no_grad_op_maker(self):
474 475
        with fluid.dygraph.guard():
            out = fluid.layers.gaussian_random(shape=[20, 30])
476
            loss = paddle.mean(out)
477
            loss.backward()
478
            self.assertTrue(out._grad_ivar() is None)
479

480 481 482 483 484
    def test_case4_with_no_grad_op_maker(self):
        with _test_eager_guard():
            self.func_case4_with_no_grad_op_maker()
        self.func_case4_with_no_grad_op_maker()

485 486 487

if __name__ == '__main__':
    unittest.main()