test_hash_op.py 4.8 KB
Newer Older
1
#   Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
M
minqiyang 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest
import numpy as np
from op_test import OpTest
18
import paddle.fluid as fluid
M
minqiyang 已提交
19 20


21
class TestHashOp(OpTest):
M
minqiyang 已提交
22 23 24 25
    def setUp(self):
        self.op_type = "hash"
        self.init_test_case()
        self.inputs = {'X': (self.in_seq, self.lod)}
26
        self.attrs = {'num_hash': 2, 'mod_by': 10000}
M
minqiyang 已提交
27 28 29
        self.outputs = {'Out': (self.out_seq, self.lod)}

    def init_test_case(self):
30 31 32
        np.random.seed(1)
        self.in_seq = np.random.randint(0, 10, (8, 1)).astype("int32")
        self.lod = [[2, 6]]
33 34 35 36 37 38 39 40 41 42
        self.out_seq = [
            [[3481], [7475]],
            [[1719], [5986]],
            [[8473], [694]],
            [[3481], [7475]],
            [[4372], [9456]],
            [[4372], [9456]],
            [[6897], [3218]],
            [[9038], [7951]],
        ]
43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59
        self.out_seq = np.array(self.out_seq)

    def test_check_output(self):
        self.check_output()


class TestHashNotLoDOp(TestHashOp):
    def setUp(self):
        self.op_type = "hash"
        self.init_test_case()
        self.inputs = {'X': self.in_seq}
        self.attrs = {'num_hash': 2, 'mod_by': 10000}
        self.outputs = {'Out': self.out_seq}

    def init_test_case(self):
        np.random.seed(1)
        self.in_seq = np.random.randint(0, 10, (8, 1)).astype("int32")
60 61 62 63 64 65 66 67 68 69
        self.out_seq = [
            [[3481], [7475]],
            [[1719], [5986]],
            [[8473], [694]],
            [[3481], [7475]],
            [[4372], [9456]],
            [[4372], [9456]],
            [[6897], [3218]],
            [[9038], [7951]],
        ]
M
minqiyang 已提交
70
        self.out_seq = np.array(self.out_seq)
M
minqiyang 已提交
71 72 73 74 75

    def test_check_output(self):
        self.check_output()


76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112
class TestHashOp2(TestHashOp):
    """
    Case:
    int64 type input
    """

    def setUp(self):
        self.op_type = "hash"
        self.init_test_case()
        self.inputs = {'X': self.in_seq}
        self.attrs = {'num_hash': 2, 'mod_by': 10000}
        self.outputs = {'Out': self.out_seq}

    def init_test_case(self):
        self.in_seq = np.array([1, 2**32 + 1]).reshape((2, 1)).astype("int64")
        self.out_seq = np.array([1269, 9609, 3868, 7268]).reshape((2, 2, 1))

    def test_check_output(self):
        self.check_output()


class TestHashOp3(TestHashOp):
    """
    Case:
    int64 type input
    int64 type mod_by attr
    """

    def setUp(self):
        self.op_type = "hash"
        self.init_test_case()
        self.inputs = {'X': self.in_seq}
        self.attrs = {'num_hash': 2, 'mod_by': 2**32}
        self.outputs = {'Out': self.out_seq}

    def init_test_case(self):
        self.in_seq = np.array([10, 5]).reshape((2, 1)).astype("int64")
113 114 115
        self.out_seq = np.array(
            [1204014882, 393011615, 3586283837, 2814821595]
        ).reshape((2, 2, 1))
116 117 118 119 120

    def test_check_output(self):
        self.check_output()


121 122 123 124 125 126 127 128 129 130 131 132 133
class TestHashOpError(unittest.TestCase):
    def test_errors(self):
        with fluid.program_guard(fluid.Program(), fluid.Program()):
            input_data = np.random.randint(0, 10, (8, 1)).astype("int32")

            def test_Variable():
                # the input type must be Variable
                fluid.layers.hash(input=input_data, hash_size=2**32)

            self.assertRaises(TypeError, test_Variable)

            def test_type():
                # dtype must be int32, int64.
134 135 136
                x2 = fluid.layers.data(
                    name='x2', shape=[1], dtype="float32", lod_level=1
                )
137 138 139 140 141 142
                fluid.layers.hash(input=x2, hash_size=2**32)

            self.assertRaises(TypeError, test_type)

            def test_hash_size_type():
                # hash_size dtype must be int32, int64.
143 144 145
                x3 = fluid.layers.data(
                    name='x3', shape=[1], dtype="int32", lod_level=1
                )
146 147 148 149 150 151
                fluid.layers.hash(input=x3, hash_size=1024.5)

            self.assertRaises(TypeError, test_hash_size_type)

            def test_num_hash_type():
                # num_hash dtype must be int32, int64.
152 153 154
                x4 = fluid.layers.data(
                    name='x4', shape=[1], dtype="int32", lod_level=1
                )
155 156 157 158 159
                fluid.layers.hash(input=x4, hash_size=2**32, num_hash=2.5)

            self.assertRaises(TypeError, test_num_hash_type)


M
minqiyang 已提交
160 161
if __name__ == "__main__":
    unittest.main()