test_hash_op.py 5.0 KB
Newer Older
1
#   Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
M
minqiyang 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest
import numpy as np
from op_test import OpTest
18
import paddle.fluid as fluid
M
minqiyang 已提交
19 20


21
class TestHashOp(OpTest):
22

M
minqiyang 已提交
23 24 25 26
    def setUp(self):
        self.op_type = "hash"
        self.init_test_case()
        self.inputs = {'X': (self.in_seq, self.lod)}
27
        self.attrs = {'num_hash': 2, 'mod_by': 10000}
M
minqiyang 已提交
28 29 30
        self.outputs = {'Out': (self.out_seq, self.lod)}

    def init_test_case(self):
31 32 33 34 35 36 37 38 39 40 41 42 43
        np.random.seed(1)
        self.in_seq = np.random.randint(0, 10, (8, 1)).astype("int32")
        self.lod = [[2, 6]]
        self.out_seq = [[[3481], [7475]], [[1719], [5986]], [[8473], [694]],
                        [[3481], [7475]], [[4372], [9456]], [[4372], [9456]],
                        [[6897], [3218]], [[9038], [7951]]]
        self.out_seq = np.array(self.out_seq)

    def test_check_output(self):
        self.check_output()


class TestHashNotLoDOp(TestHashOp):
44

45 46 47 48 49 50 51 52 53 54 55 56 57
    def setUp(self):
        self.op_type = "hash"
        self.init_test_case()
        self.inputs = {'X': self.in_seq}
        self.attrs = {'num_hash': 2, 'mod_by': 10000}
        self.outputs = {'Out': self.out_seq}

    def init_test_case(self):
        np.random.seed(1)
        self.in_seq = np.random.randint(0, 10, (8, 1)).astype("int32")
        self.out_seq = [[[3481], [7475]], [[1719], [5986]], [[8473], [694]],
                        [[3481], [7475]], [[4372], [9456]], [[4372], [9456]],
                        [[6897], [3218]], [[9038], [7951]]]
M
minqiyang 已提交
58
        self.out_seq = np.array(self.out_seq)
M
minqiyang 已提交
59 60 61 62 63

    def test_check_output(self):
        self.check_output()


64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100
class TestHashOp2(TestHashOp):
    """
    Case:
    int64 type input
    """

    def setUp(self):
        self.op_type = "hash"
        self.init_test_case()
        self.inputs = {'X': self.in_seq}
        self.attrs = {'num_hash': 2, 'mod_by': 10000}
        self.outputs = {'Out': self.out_seq}

    def init_test_case(self):
        self.in_seq = np.array([1, 2**32 + 1]).reshape((2, 1)).astype("int64")
        self.out_seq = np.array([1269, 9609, 3868, 7268]).reshape((2, 2, 1))

    def test_check_output(self):
        self.check_output()


class TestHashOp3(TestHashOp):
    """
    Case:
    int64 type input
    int64 type mod_by attr
    """

    def setUp(self):
        self.op_type = "hash"
        self.init_test_case()
        self.inputs = {'X': self.in_seq}
        self.attrs = {'num_hash': 2, 'mod_by': 2**32}
        self.outputs = {'Out': self.out_seq}

    def init_test_case(self):
        self.in_seq = np.array([10, 5]).reshape((2, 1)).astype("int64")
101 102
        self.out_seq = np.array([1204014882, 393011615, 3586283837,
                                 2814821595]).reshape((2, 2, 1))
103 104 105 106 107

    def test_check_output(self):
        self.check_output()


108
class TestHashOpError(unittest.TestCase):
109

110 111 112 113 114 115 116 117 118 119 120 121
    def test_errors(self):
        with fluid.program_guard(fluid.Program(), fluid.Program()):
            input_data = np.random.randint(0, 10, (8, 1)).astype("int32")

            def test_Variable():
                # the input type must be Variable
                fluid.layers.hash(input=input_data, hash_size=2**32)

            self.assertRaises(TypeError, test_Variable)

            def test_type():
                # dtype must be int32, int64.
122 123 124 125
                x2 = fluid.layers.data(name='x2',
                                       shape=[1],
                                       dtype="float32",
                                       lod_level=1)
126 127 128 129 130 131
                fluid.layers.hash(input=x2, hash_size=2**32)

            self.assertRaises(TypeError, test_type)

            def test_hash_size_type():
                # hash_size dtype must be int32, int64.
132 133 134 135
                x3 = fluid.layers.data(name='x3',
                                       shape=[1],
                                       dtype="int32",
                                       lod_level=1)
136 137 138 139 140 141
                fluid.layers.hash(input=x3, hash_size=1024.5)

            self.assertRaises(TypeError, test_hash_size_type)

            def test_num_hash_type():
                # num_hash dtype must be int32, int64.
142 143 144 145
                x4 = fluid.layers.data(name='x4',
                                       shape=[1],
                                       dtype="int32",
                                       lod_level=1)
146 147 148 149 150
                fluid.layers.hash(input=x4, hash_size=2**32, num_hash=2.5)

            self.assertRaises(TypeError, test_num_hash_type)


M
minqiyang 已提交
151 152
if __name__ == "__main__":
    unittest.main()