test_full_like_op.py 4.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
#   Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import paddle
import paddle.fluid.core as core
17
from paddle.static import program_guard, Program
18 19 20
import unittest
import numpy as np
from op_test import OpTest
21
from paddle.fluid.framework import convert_np_dtype_to_dtype_
22
from paddle.fluid.framework import _test_eager_guard
23 24 25


class TestFullOp(unittest.TestCase):
26
    """Test fill_any_like op(whose API is full_like) for attr out."""
27 28 29 30 31 32

    def test_attr_tensor_API(self):
        startup_program = Program()
        train_program = Program()
        with program_guard(train_program, startup_program):
            fill_value = 2.0
33 34 35
            input = paddle.fluid.data(
                name='input', dtype='float32', shape=[2, 3]
            )
36 37 38 39 40 41
            output = paddle.full_like(input, fill_value)
            output_dtype = paddle.full_like(input, fill_value, dtype='float32')

            place = paddle.CPUPlace()
            if core.is_compiled_with_cuda():
                place = paddle.CUDAPlace(0)
42
            exe = paddle.static.Executor(place)
43 44 45 46
            exe.run(startup_program)

            img = np.array([[1, 2, 3], [4, 5, 6]]).astype(np.float32)

47 48 49
            res = exe.run(
                train_program, feed={'input': img}, fetch_list=[output]
            )
50 51

            out_np = np.array(res[0])
52 53 54 55
            self.assertTrue(
                not (out_np - np.full_like(img, fill_value)).any(),
                msg="full_like output is wrong, out = " + str(out_np),
            )
56 57

    def test_full_like_imperative(self):
58 59 60 61 62 63 64
        paddle.disable_static()
        input = paddle.arange(6, 10, dtype='float32')
        out = paddle.full_like(input, fill_value=888.88, dtype='float32')
        out_numpy = np.random.random((4)).astype("float32")
        out_numpy.fill(888.88)
        self.assertTrue((out.numpy() == out_numpy).all(), True)
        paddle.enable_static()
65

66 67 68 69 70 71 72 73 74
    def test_full_like_fill_inf(self):
        paddle.disable_static()
        input = paddle.arange(6, 10, dtype='float32')
        out = paddle.full_like(input, fill_value=float('inf'))
        out_numpy = np.random.random((4)).astype("float32")
        out_numpy.fill(float('inf'))
        self.assertTrue((out.numpy() == out_numpy).all(), True)
        paddle.enable_static()

75 76 77 78

class TestFullOpError(unittest.TestCase):
    def test_errors(self):
        with program_guard(Program(), Program()):
79
            # for ci coverage
80

81 82 83
            input_data = paddle.fluid.data(
                name='input', dtype='float32', shape=[2, 3]
            )
84 85 86 87 88
            output = paddle.full_like(input_data, 2.0)

            def test_input_dtype():
                paddle.full_like

89 90 91 92 93 94 95
            self.assertRaises(
                TypeError,
                paddle.full_like,
                x=input_data,
                fill_value=2,
                dtype='uint4',
            )
96 97


98 99 100 101 102 103 104 105 106 107 108 109 110 111
class TestFullLikeOp1(OpTest):
    # test basic
    def setUp(self):
        self.op_type = "fill_any_like"
        self.python_api = paddle.full_like
        self.init_data()

        x = np.zeros(self.shape)
        out = np.full_like(x, self.fill_value, self.dtype)

        self.inputs = {'X': x}
        self.outputs = {'Out': out}
        self.attrs = {
            'value': self.fill_value,
112
            'dtype': convert_np_dtype_to_dtype_(self.dtype),
113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137
        }

    def init_data(self):
        self.fill_value = 5
        self.shape = [10, 10]
        self.dtype = np.float32

    def test_check_output(self):
        self.check_output(check_eager=True)


class TestFullLikeOp2(TestFullLikeOp1):
    def init_data(self):
        self.fill_value = 1000
        self.shape = [1024, 1024]
        self.dtype = np.float64


class TestFullLikeOp3(TestFullLikeOp1):
    def init_data(self):
        self.fill_value = 8888
        self.shape = [5000, 5000]
        self.dtype = np.int64


138 139 140
@unittest.skipIf(
    not core.is_compiled_with_cuda(), "core is not compiled with CUDA"
)
141 142 143 144
class TestFullLikeOp4(unittest.TestCase):
    def test_skip_data_transform(self):
        paddle.disable_static()
        with _test_eager_guard():
145 146 147 148
            x = paddle.to_tensor(
                [1.0, 2.0, 3.0, 4.0], place=paddle.CUDAPinnedPlace()
            )
            out = paddle.full_like(x, 1.0)
149
            self.assertTrue(
150 151
                (out.numpy() == np.ones([4]).astype(np.float32)).all(), True
            )
152 153 154
        paddle.enable_static()


155 156
if __name__ == "__main__":
    unittest.main()