test_full_like_op.py 4.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
#   Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

import paddle
import paddle.fluid.core as core
19
from paddle.static import program_guard, Program
20 21 22 23
import paddle.compat as cpt
import unittest
import numpy as np
from op_test import OpTest
24
from paddle.fluid.framework import convert_np_dtype_to_dtype_
25 26 27 28 29 30 31 32 33 34


class TestFullOp(unittest.TestCase):
    """ Test fill_any_like op(whose API is full_like) for attr out. """

    def test_attr_tensor_API(self):
        startup_program = Program()
        train_program = Program()
        with program_guard(train_program, startup_program):
            fill_value = 2.0
35 36
            input = paddle.fluid.data(
                name='input', dtype='float32', shape=[2, 3])
37 38 39 40 41 42
            output = paddle.full_like(input, fill_value)
            output_dtype = paddle.full_like(input, fill_value, dtype='float32')

            place = paddle.CPUPlace()
            if core.is_compiled_with_cuda():
                place = paddle.CUDAPlace(0)
43
            exe = paddle.static.Executor(place)
44 45 46 47 48 49 50 51 52 53 54 55 56 57
            exe.run(startup_program)

            img = np.array([[1, 2, 3], [4, 5, 6]]).astype(np.float32)

            res = exe.run(train_program,
                          feed={'input': img},
                          fetch_list=[output])

            out_np = np.array(res[0])
            self.assertTrue(
                not (out_np - np.full_like(img, fill_value)).any(),
                msg="full_like output is wrong, out = " + str(out_np))

    def test_full_like_imperative(self):
58 59 60 61 62 63 64
        paddle.disable_static()
        input = paddle.arange(6, 10, dtype='float32')
        out = paddle.full_like(input, fill_value=888.88, dtype='float32')
        out_numpy = np.random.random((4)).astype("float32")
        out_numpy.fill(888.88)
        self.assertTrue((out.numpy() == out_numpy).all(), True)
        paddle.enable_static()
65

66 67 68 69 70 71 72 73 74
    def test_full_like_fill_inf(self):
        paddle.disable_static()
        input = paddle.arange(6, 10, dtype='float32')
        out = paddle.full_like(input, fill_value=float('inf'))
        out_numpy = np.random.random((4)).astype("float32")
        out_numpy.fill(float('inf'))
        self.assertTrue((out.numpy() == out_numpy).all(), True)
        paddle.enable_static()

75 76 77 78 79 80

class TestFullOpError(unittest.TestCase):
    def test_errors(self):
        with program_guard(Program(), Program()):
            #for ci coverage

81
            input_data = paddle.fluid.data(
82 83 84 85 86 87 88 89 90 91 92 93 94 95
                name='input', dtype='float32', shape=[2, 3])
            output = paddle.full_like(input_data, 2.0)

            def test_input_dtype():
                paddle.full_like

            self.assertRaises(
                TypeError,
                paddle.full_like,
                x=input_data,
                fill_value=2,
                dtype='uint4')


96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
class TestFullLikeOp1(OpTest):
    # test basic
    def setUp(self):
        self.op_type = "fill_any_like"
        self.python_api = paddle.full_like
        self.init_data()

        x = np.zeros(self.shape)
        out = np.full_like(x, self.fill_value, self.dtype)

        self.inputs = {'X': x}
        self.outputs = {'Out': out}
        self.attrs = {
            'value': self.fill_value,
            'dtype': convert_np_dtype_to_dtype_(self.dtype)
        }

    def init_data(self):
        self.fill_value = 5
        self.shape = [10, 10]
        self.dtype = np.float32

    def test_check_output(self):
        self.check_output(check_eager=True)


class TestFullLikeOp2(TestFullLikeOp1):
    def init_data(self):
        self.fill_value = 1000
        self.shape = [1024, 1024]
        self.dtype = np.float64


class TestFullLikeOp3(TestFullLikeOp1):
    def init_data(self):
        self.fill_value = 8888
        self.shape = [5000, 5000]
        self.dtype = np.int64


136 137
if __name__ == "__main__":
    unittest.main()